
International Journal of Engineering Science and Advanced Technology (IJESAT)

Vol 23 Issue 9, SEP, 2023.

ISSN No: 2250-3676 www.ijesat.com Page | 19

SRE GUIDE FOR QUICK RECOVERY

Nazmuddin F Shaikh

Director of Engineering, Sam club Technologies, Walmart Inc, Bentonville, USA,

Email: s.nazmuddin@gmail.com

ABSTRACT

SRE team or Site Resolution engineer is generally the team responsible for availability, latency,

performance, efficiency, change management, monitoring, emergency response, and capacity

planning. In today’s cloud infrastructure and microservices architecture it has become more

critical of a role with growing focus on the availability and performance. In most of the cases

in today’s world the SRE teams are the ones who even take up the responsibility for handling

the recovery and RCA (Root cause analysis) for the issues and troubleshooting for the issues

and handling the escalation matrix. Many operations teams today have a similar role, sometimes

without some of the bits that I've identified. We are trying to have the focus on the quick steps

which can be handy and can be used irrespective of the application and infrastructure.

Keywords: SRE, RCA, MTTR, MMTD, Availability, DR (Disaster Receovery)

INTRODUCTION

The quick steps below are focused to talk about the recovery of any software application or site

in general. It must be noted that the actual recovery time for any software application might be

less, but the impact can be long lasting and never returning in terms of Users experience and

trust. In worst case scenarios these can be during the High potential sales events and like

Thanksgiving and Christmas which will even lead to loss of trust from other Business partners

and leaders.

Preconditions:

When make sure we have the right documentation and clear understanding of the application

which can be used in case of any failure or disaster. We talk about all the preparation and

precautions, we can take to make sure such an event is not happening on any day, we should

always be ready and have a clear plan of execution for such a disaster. In this short note we

plan to discuss some basics steps which can be used to prepare our applications for recovery

from such an unplanned disaster. The below are few of the key Basic resiliency needs for every

application which we should have in place to

1) Should have a block diagram view of the services/applications involved in the overall workflow

and black box each application/component.

http://www.ijesat.com/

ISSN No: 2250-3676 www.ijesat.com Page | 20

Architecture review and services documentation should be mandated to be updated as part of

each change for all critical applications.

2) Each component should define their Golden signals and should have a clear trend view of the

Golden signals. Every new client onboarding and dependency injection should be validated to

have proper golden signals built whenever a change is implemented.

3) Each application or component should have a DR playbook or well-defined failover strategy

which should be executable in fraction of time.

This playbook should be kept updated with each change that is implemented in the system at

the design level. This should part of the change management and approval process for critical

applications.

4) In general, critical application should have redundant routes for achieving a higher degree of

availability. If one systems probability of failure is 1 − α, then the probability of the system

being down which has 2 redundant subsystems either in different regions, clusters or data

centers decreases by the below formula, F = (1−α1) × (1−α2).

 Availability = 1-F.

So, a system having 2 regions with each 99% availability, the availability of the overall system

theoretically goes to 99.99%. Each one can fail up to 1% and the probability that they both fail

is (1−99%) × (1−99%) = .01%. This makes the availability of a. system using 2 regions or

clusters as 99.99%.

SRE metrics:

Some of the most widely used terms and metrics determining the SRE functioning and metrics

to measure the performance industry wide are as below.

What Is MTTD?

Mean Time to Detect (MTTD) is the average time it takes a team to discover a security threat

or incident. This is general terms is the time the team took even to acknowledge there is an

issue. This can vary from application to application and also it has its own calculation

implications based on the deviation from normal trend etc.

What Is MTTR?

Mean Time to Respond (MTTR) measures the average time it takes to control and remediate a

threat. This is the time which determines your responsiveness and alertness to handle any issue.

This is where all your golden signals and alerting helps you.

http://www.ijesat.com/

ISSN No: 2250-3676 www.ijesat.com Page | 21

How Do You Measure MTTD and MTTR?

MTTD and MTTR depend on a number of factors, including the size and complexity of your

network, the size and expertise of your IT staff, your industry, and more. Another thing to keep

in mind is that different companies measure things in different ways.

There are no industry-standard approaches to measuring between these two performance

indicators, so granular comparisons between organizations can be problematic apples-vs-

oranges affairs.

Troubleshooting Steps:

As we talk about the preconditions which we expect we should always have for an application,

now let’s try to deep dive into some specific course of action items which can be taken when

we find ourselves in such a situation.

Initial reaction or Triage: Whenever any issue is reported, don’t go with history and

presumptions rather take a minute to look at the exact impact being noticed. Generally

monitoring and alerting frameworks tend to go with trend charts and static monitors and alerts

which can be faulty at times but nevertheless each instance should be looked at as a potential

P0 to begin with.

Top-Down approach:

When looking at any issue, don’t go with a bottom-up approach or start looking at each

component one by one. That can be done by individuals once you have established the

application being impacted Root cause or path to recovery.

Ideally you should start at this step, the other black box view and golden signals for each black

box should be available with each team and should be always handy to work on.

Start looking at Top-Down approach and find which application in the funnel is not behaving

as expected. Generally, if a core downstream is impacted, your metrics for all the funnel shows

the impact.

Isolate the Faulty:

Try to isolate the faulty system or component as soon as possible and focus on recovery. While

isolating the application or component don’t get overridden by confidence or historical behavior

of any application, rather take into consideration any and every component or application can

fail. We have seen prejudice about a particular component or false confidence causes a lot of

precious time to go waste. Don’t try to find in detail why a particular System or component is

failing and how we can fix the Root because of it. Try to find What is failing and what can be

1 2 3 4

http://www.ijesat.com/

ISSN No: 2250-3676 www.ijesat.com Page | 22

easiest mitigation. Look at each Blocks Golden signals with an approach that anything can fail,

never take any application or component assumed to be always working and to be resilient.

 Look at the Golden Signals in 3 different Perspective.

 The incoming requests or the Upstream applications are impacted.

 The downstream is impacted.

 System under observation is impacted.

For the Upstream being impacted, your incoming request trend and error trend in your

application can serve the high-level view and help in deciding the Upstream status.

In most cases your request trend might also be impacted from the Retries by user, refresh,

system retries etc. Also, just an increase in the Request should be handled by the current matured

scalable systems with auto scale etc. The Request trend with a corresponding increase in

Processing error in the system can mean it can be a data issue in the system or the request data

also. Log analysis plays a critical role as well in this case as the upstream request flow might

be impacted in a particular region and will show as an error in downstream processing in a

particular region. Don’t finalize the Root cause as upstream just based on Request trend.

For the downstream systems, always have your golden signals configured for latency, error

trend and denials. In general, Downstream golden signals are clear and should help in deciding

the impacted downstream. In some cases, if all downstream are showing impact and metrics for

them are deviated. It can be your system calling all those dependencies or network in between.

Black Box each component:

Treat each application as a Black Box till you isolate the faulty system. Current System under

examination is more complex. Treat your application as a black box to start with. Don’t look at

logs to start with and try to find what is happening in detail. Look at things from a high-level

availability perspective.

For system we should have below params to look at.

1) System trends of CPU, Memory, processing time, threads, GC, etc.

2) Request processing trend of 2xx,5xx,4xx etc.

These two ways to look at each application will help in deciding that is it available or not.

Once you cover each block in a top-down approach and identify the system /application which

is not working as expected, plan to mitigate the issue in parallel rather than deep diving into the

RCA.

http://www.ijesat.com/

ISSN No: 2250-3676 www.ijesat.com Page | 23

Route to Mitigation.

1) Mitigation becomes easier if you can have golden signals isolated by Region/Datacenters

/Clusters etc.

2) Mitigation can be easily performed if region affinity, same DC calls, local cluster affinity is

built in the system.

3) Take traffic routing, out of rotation decision based on the golden signals.

4) Disaster recovery, Failover strategy to passive application, etc. should be carried out if the

Golden signals indicate problem is isolated.

Root cause analysis:

Any issue can happen because of two things.

A) A potential change in system or data.

B) A pile up effect or exhaustion of resources over a period, you just happen to cross the bottleneck

at a moment.

C) A network change also influences the system and becomes difficult to identify.

So while trying to find the Root cause of any issue, go through the change list across the

application. Change in system, change in data, change in infrastructure, network, monitoring,

logging, etc. This will help to focus on the right area. The application configuration might have

a retry, timeout setup, configuration etc. which might be kicking in when a certain data

condition or system condition is reached, make sure you go through these flags, timeouts, retries

etc. While doing RCA, try to compare trend charts and not only a snapshot of the impacted

window. The difference can be used to nail down the Root cause. For RCA we should have the

trend charts in detail, if possible, at a cluster or node level segregation, so that any issue at

granular level can be looked at.

CONCLUSION

While SRE teams can focus on different RCA and different matrix to identify the root cause

and achieve best in class Availability and Performance for the applications. Troubleshooting is

often a skill associated to the algorithm of thinking applied by a person or a team. By using

simple steps listed above we can standardize and over a period refine those as per the need of

the particular application to achieve best MTTD and MTTR. With cloud infrastructure at

dispose scalability has become easy, but comes with overburden of cost and mismanaged

resources, but it can be leveraged to attain better availability and Disaster recovery mode.

http://www.ijesat.com/

ISSN No: 2250-3676 www.ijesat.com Page | 24

References:

1. N Kavyashree, MC Supriya, MR Lokesh, Site reliability engineering for IOS mobile

application in small-medium scale industries

2. V Ukis , Establishing SRE Foundations: A Step-by-Step Guide to Introducing Site Reliability

Engineering in Software Delivery Organizations

3. Betsy Bayers , Chris jones Site reliability engineering , oreilly books.

4. Laura Nolan,Seeing Like an SRE: Site Reliability Engineering as High Modernism

5. E Zio, Reliability engineering: Old problems and new challenges

6. E Zio ,Some Challenges and Opportunities in Reliability Engineering, IEEE, Volume: 65

Issue: 4

7. Nazmuddin Shaikh , Omni channel commerce and Generative AI.

http://www.ijesat.com/
https://scholar.google.com/citations?user=O0hgEucAAAAJ&hl=en&oi=sra
https://scholar.google.com/citations?user=CCfMxaMAAAAJ&hl=en&oi=sra
https://www.sciencedirect.com/science/article/pii/S2666285X21000935
https://www.sciencedirect.com/science/article/pii/S2666285X21000935
https://books.google.com/books?hl=en&lr=&id=tNnPEAAAQBAJ&oi=fnd&pg=PT23&dq=site+reliability+engineering&ots=u4acR5C--x&sig=m0atR0Zcfh3qKJ-647H1Nlfx2U0
https://books.google.com/books?hl=en&lr=&id=tNnPEAAAQBAJ&oi=fnd&pg=PT23&dq=site+reliability+engineering&ots=u4acR5C--x&sig=m0atR0Zcfh3qKJ-647H1Nlfx2U0
https://www.usenix.org/publications/loginonline/seeing-sre-site-reliability-engineering-high-modernism#Laura%20Nolan
https://ieeexplore.ieee.org/xpl/tocresult.jsp?isnumber=7762242&punumber=24
https://ieeexplore.ieee.org/xpl/tocresult.jsp?isnumber=7762242&punumber=24

	What Is MTTD?
	What Is MTTR?
	How Do You Measure MTTD and MTTR?
	5. E Zio, Reliability engineering: Old problems and new challenges
	6. E Zio ,Some Challenges and Opportunities in Reliability Engineering, IEEE, Volume: 65 Issue: 4

