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Abstract:

Mission-critical video analytics in industries demand
ultra-low, predictable latency. This paper presents a
novel architecture for private 5G networks built on a
MEC-native principle, where Multi-access Edge
Computing is the intrinsic core. Our system enables
joint, dynamic orchestration of compute and network
slices for video streams from camera to analytic
dashboard. Through comprehensive benchmarks of a
real-world implementation, we quantify significant
performance gains. The proposed MEC-native
orchestration achieves a 30—40% reduction in end-to-
end latency and jitter compared to static edge
deployments. This substantial improvement proves its
essential role for reliable, real-time industrial
applications, providing a deterministic framework for
CCTV, quality inspection, and worker safety.
Keywords: Private 5G Networks, Multi-access Edge
Computing, Mission-Critical Applications, Video
Analytics, Latency, Network Orchestration

I. INTRODUCTION

To instantly spot a safety hazard or identify a
microscopic product defect in real-time, a delay of
even a fraction of a second is unacceptable. Yet,
today’s video analytics often rely on distant cloud
servers, introducing frustrating lag. While moving
processing to the local "edge" of the network
helps, current setups are rigid—like bolting a
powerful computer to the factory floor with a one-
size-fits-all internet connection. This static
approach often wastes resources and still fails to
guarantee the split-second, deterministic timing
that life-and-business-critical applications
demand, as they cannot adapt to changing network
loads or computational priorities.This paper
explores a smarter, integrated solution. We
designed and implemented a system where ultra-
fast local computing power Multi-access Edge
Computing and a dedicated, on-site private 5G
network are architected from the ground up as a
single, cooperative unit. We term this a "MEC-
native" private 5G network. In this intelligent
ISSN No: 2250-3676

www.ijesat.com

setup, the moment a high-priority video feed from
a camera or sensor requires analysis, a unified
orchestrator can dynamically assign the optimal
compute node within the MEC cluster and
simultaneously carve out a guaranteed, high-speed
data lane (a dedicated network slice) for that
specific stream on the fly. This co-optimization
ensures data takes the shortest, most efficient path
with prioritized resources.We rigorously tested
this idea with a complete, real-world video
analytics pipeline, measuring performance from
camera capture to on-screen alert. Benchmarks
comparing our MEC-native orchestration against
the conventional static method yielded a striking
and consistent result: a 30-40% reduction in both
end-to-end latency and jitter. This is not a minor
incremental improvement but a fundamental leap
in capability. It demonstrates that by deeply
integrating compute and network control, we can
transform private 5G from a passive pipe into an
intelligent, adaptive substrate. This makes
reliable, real-time video intelligence for industrial
safety, security surveillance, and automated
precision inspection not just a theoretical promise,
but a deployable, practical reality.

II. LITERATURE SURVEY

The evolution of mission-critical video analytics
began with cloud-centric architectures, yet studies
by Shi et al. (2016) and Satyanarayanan (2017)
revealed prohibitive latency and bandwidth
constraints for real-time streams, catalyzing a shift
toward Multi-access Edge Computing (MEC).
Frameworks such as those by Taleb et al. (2017)
demonstrated latency reductions by processing
data near the source. Concurrently, the advent of
private 5G networks with Ultra-Reliable Low-
Latency Communication (URLLC) -capabilities
outlined by Popovski et al. (2018)—promised
deterministic connectivity for industrial IoT.
However, a significant gap persists: most existing
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work, including surveys by Mach & Becvar
(2017), treats compute and network orchestration
as separate domains, resulting in siloed
management and sub-optimal performance under
dynamic loads. Emerging research on integrated
"MEC-in-Native" designs, as conceptualized in
ETSI standards, suggests co-designing the edge
platform with the 5G core is essential. Yet,
empirical benchmarks quantifying the end-to-end
latency gains of such a deeply integrated, MEC-
native private 5G architecture for a full video
analytics pipeline remain scarce. Our work
directly addresses this gap by implementing this
integrated  paradigm  and
performance against static baselines to provide

measuring  its

conclusive, quantified validation of its critical
advantage.
II1. PROPOSED WORK

This paper proposes the design, implementation,
and empirical validation of a novel MEC-native
architecture for private 5G networks, specifically
engineered to meet the stringent latency and
reliability demands of mission-critical video
analytics. The core objective is to eliminate the
performance limitations of current static edge
deployments by co-designing the Multi-access
Edge Computing platform and the private 5G
network as a single, intelligently orchestrated
system.The proposed work unfolds across three
integrated phases. First, we will architect and
implement the foundational system. This involves
deeply integrating a containerized 5G User Plane
Function within a Kubernetes-based MEC host,
ensuring local traffic breakout at the edge. The
centerpiece is a unified Joint Orchestrator, which
will have a consolidated view of both compute
resources (CPU/GPU load, memory) and network
states (UE location, radio conditions, slice
availability). Second, we will develop and deploy
orchestration policies and algorithms. These
intelligent rules will enable the system to
dynamically perform two key actions in tandem:
placing and scaling the appropriate video analytics
containers (e.g., YOLO-based object detectors) on
the optimal MEC node, and simultaneously
provisioning a dedicated, high-priority network
slice for the specific camera feed associated with
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that workload. Finally, we will construct a

physical testbed using commercial hardware,
software-defined radios, and an open-source 5G
core to conduct reproducible
benchmarking. The definitive evaluation will
measure and compare the end-to-end latency and
jitter of a complete video analytics pipeline under

rigorous,

our proposed MEC-native orchestration against a
conventional static deployment baseline, thereby
quantifying the anticipated 30-40% performance
improvement.
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Fig 1: Proposed Architecture Diagram

IV. METHODOLOGY

Our methodology is structured around a
comparative, empirical approach to validate the
proposed architecture.

1. Testbed Construction:

We first construct a physical testbed comprising
the core components: a private 5G network using
software-defined radio (USRP) and an open-
source 5G Core (Open5GS), a Kubernetes-based
MEC cluster, and IP cameras as data sources. A
central management server hosts the Joint
Orchestrator. The baseline "Static" setup uses
fixed workload placement and a default network
slice.

2. System Implementation:

We implement two orchestration modes. The
Static Mode manually deploys the video analytics
application on a predetermined MEC node with a
best-effort network path. The MEC-Native Mode
integrates our Joint Orchestrator, which uses a
simple heuristic algorithm. This algorithm
monitors UE location and application demand,
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dynamically placing the analytics container on the
MEC node closest to the serving gNodeB and
simultaneously provisioning a dedicated, high-
priority network slice for its video stream.

3. Benchmarking & Data Collection:

The primary experiment involves streaming live
video for object detection. We measure End-to-
End Latency(camera capture to dashboard display)
and Jitter using hardware timestamps at each
pipeline stage (transmission, MEC processing,
result delivery). Each experiment is repeated
under identical, controlled network load
conditions for both orchestration modes to ensure
a fair comparison.

4. Analysis:

We statistically analyze the collected latency and
jitter data. The performance improvement is
quantified by comparing the mean, 95th percentile
(tail latency), and standard deviation (jitter) of the
distributions from the MEC-Native mode against
the Static baseline, aiming to demonstrate the
targeted 30-40% reduction.

VI. RESULTS AND DISCUSSION

The empirical benchmarks demonstrate a
significant performance advantage for the
proposed MEC-native architecture. As shown in
Table 1, the key latency and jitter metrics for the
video analytics pipeline are substantially lower
under dynamic orchestration.

Metric Static MEC-Native
Orchestration | Orchestration
End-to-E
nd-to-End 152 ms 98 ms
Latency
L
-atency 28 ms 17 ms
Jitter (o)
95th
Percentile 210 ms 132 ms
Latency

Table 1: Performance Comparison (Mean Values)

The data in Table 1 quantifies the substantial
performance gains achieved by the MEC-native
architecture. The system reduced mean end-to-end
latency by 35.5%, from 152 ms to 98 ms, directly
enhancing real-time responsiveness. More
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significantly, latency jitter was cut by 39.3%, with

the standard deviation dropping from 28 ms to 17
ms, which critically improves predictability for
deterministic operations. The 37.1% improvement
in the 95th percentile latency—from 210 ms down
to 132 ms—demonstrates that the system
effectively mitigates the worst-case delays that
plague static deployments. These collective
improvements confirm that the dynamic, joint
orchestration of compute and network resources
successfully transforms the private 5G edge into a
reliable, high-performance platform for mission-
critical video analytics.
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Figure 2: End-to-End Latency Over Time

This plot compares the instantaneous latency of
the video analytics pipeline over a 60-second
period for the MEC-native system against the
static baseline. The MEC-native trace shows
consistently low and stable latency, while the
static baseline exhibits high variability with
frequent, disruptive spikes. This visualization
underscores the proposed system's superior ability
to provide deterministic, low-jitter performance
essential for real-time applications.
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Fig 3: End-to-End Latency Distribution

This histogram compares the frequency of
observed latency values for the static deployment
and the proposed MEC-native system across
thousands of video frames. The MEC-native

distribution is significantly tighter and shifted to
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the left, indicating both lower average latency and
greatly reduced variability. Crucially, nearly all
MEC-native latencies fall below the critical 200
ms threshold, a key benchmark for real-time
interactivity, which the static deployment
frequently exceeds.

CONCLUSION

This research successfully demonstrates that a
MEC-native architecture for private 5G networks
is a transformative solution for mission-critical
video analytics. By fundamentally co-designing
the Multi-access Edge Computing platform with
the 5G core and introducing a unified Joint
Orchestrator, we enable the dynamic, intelligent,
and simultaneous management of compute
workloads and network slices. Our empirical
evaluation, based on a real-world testbed,
provides conclusive evidence of this paradigm's
superiority. Benchmark results show a consistent
35-40% improvement across all key metrics—
mean end-to-end latency, jitter, and tail latency—
compared to  conventional static  edge
deployments. This significant enhancement is not
merely incremental; it represents the critical shift
from a best-effort, unpredictable data pipe to a
deterministic, optimized substrate capable of
guaranteeing the split-second response times
required for applications like industrial safety
monitoring and automated quality inspection. The
drastic reduction in jitter, in particular, proves the
system's ability to deliver predictable performance
under dynamic loads, a necessity for reliable
automation. Therefore, this work validates that
deep integration and joint orchestration are
essential architectural principles. REFERENCES
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