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Abstract 
Model-agnostic tools for the post-hoc interpretation of machine-learning models strug- 

gle to summarize the joint effects of strongly dependent features in high-dimensional fea- 

ture spaces, which play an important role in semantic image classification, for example in 

remote sensing of landcover. This contribution proposes a novel approach that interprets 

machine-learning models through the lens of feature-space transformations. It can be used 

to enhance unconditional as well as conditional post-hoc diagnostic tools including partial- 

dependence plots, accumulated local effects (ALE) plots, permutation feature importance, 

or Shapley additive explanations (SHAP). While the approach can also be applied to non- 

linear transformations, linear ones are particularly appealing, especially principal compo- 

nent analysis (PCA) and a proposed partial orthogonalization technique. Moreover, struc- 

tured PCA and model diagnostics along user-defined synthetic features offer opportunities 

for representing domain knowledge. The new approach is implemented in the R package 

wiml, which can be combined with existing explainable machine-learning packages. A 

case study on remote-sensing landcover classification with 46 features is used to demon- 

strate the potential of the proposed approach for model interpretation by domain experts. 

It is most useful in situations where groups of feature are linearly dependent and PCA can 

provide meaningful multivariate data summaries. 

Keywords Interpretable machine learning ·  Dataset-level post-hoc interpretation ·  

Predictive modelling · Model visualization · Feature-space transformation · Remote 

sensing 
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1 Introduction 
 

Interpreting complex nonlinear machine-learning models is an inherently difficult task. A 

common approach is the post-hoc analysis of black-box models for dataset-level interpreta- 

tion (Murdoch et al., 2019) using model-agnostic techniques such as the permutation-based 

variable importance, and graphical displays such as partial-dependence plots that visualize 

main effects while integrating over the remaining dimensions (Molnar et al., 2020). 

These tools are mostly limited to displaying the relationship between the response and 

one (or sometimes two) predictor(s), while attempting to control for the influence of the 

other predictors. This can be rather unsatisfactory when dealing with a large number of 

highly correlated predictors, which are often semantically grouped. While the literature 

on explainable machine learning has often focused on dealing with dependencies affect- 

ing individual features, for example by introducing conditional diagnostics (Strobl et al., 

2008; Molnar et al., 2023), practical solutions for model interpretation in high-dimensional 

feature spaces with strong dependencies are a current area of research (Molnar et al., 2020, 

2022; Seedorff & Brown, 2021; Au et al., 2022). 

High-dimensional situations with strongly dependent features routinely occur in envi- 

ronmental remote sensing and other geographical and ecological analyses (Landgrebe, 

2002; Zortea et al., 2007), which motivated the present proposal to enhance existing model 

interpretation tools by offering a new, transformed perspective. Similar issues occur in bio- 

medical applications involving, for example, speech signal processing (Sakar et al., 2019) 

and Raman spectroscopy (Guo et al., 2020). With regards to remote sensing, for exam- 

ple, vegetation ‘greenness’ as a measure of photosynthetic activity is often used to classify 

landcover or land use from satellite imagery acquired at multiple time points throughout 

the growing season (Peña & Brenning, 2015). Spectral reflectances of equivalent spectral 

bands (the features) are usually strongly correlated within the same phenological stage 

since vegetation characteristics vary gradually. Similarly. when using texture features to 

characterize image structure based on a filter bank, features with similar filter settings can 

be strongly correlated, as in our case study (Brenning et al., 2012). 

Turning our attention back to the importance of individual features, an orthogonaliza- 

tion technique can be used to single out the effect of individual features on model pre- 

dictions, avoiding the sometimes complex structure of PCs. A similar algorithm has been 

proposed in previous work (Adebayo & Kagal, 2016) in an isolated form that can be 

accommodated within the proposed general framework. This approach can, as proposed 

in this contribution, be applied to paths through feature space, such as nonlinear curves 

defined by domain-specific perspectives, or to data-driven transitions between clusters of 

observations. 

Considering the outlined challenges and existing partial solutions, the objective of the 

present work is to establish a general formal framework for the post-hoc interpretation of 

black-box models in transformed space. The proposed framework can be combined with 

commonly used plot types and diagnostics including partial dependence plots, accumulated 

local effects (ALE) plots, permutation-based variable importance, and Shapley additive 

explanations (SHAP), among other model-agnostic techniques that only have access to the 

trained model (Apley & Zhu, 2020; Molnar, 2022). While the focus of this contribution is 

on visualizing main effects and their predictive importance, analyses of conditional rela- 

tionships may also benefit from this perspective (Strobl et al., 2008; Molnar et al., 2023). 

The framework is implemented in an extensible, open-source package in R, the wiml 

package, which can be combined with existing model interpretation toolboxes. 
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2 Proposed method 

 
Let’s consider a regression or classification model 

f̂ ∶ x ↦ f̂(x) ∈ ℝ 

that was fitted to a training sample L in the (original, untransformed) p-dimensional feature 

space  X ⊂ ℝp
. I will assume  f̂(x) ∈ ℝ; in the case of classification problems,  f̂(x) shall 

therefore represent predictions of some real-valued quantity such as the probability or logit 

of a selected target class. One of the features, referred to as xs, is selected as the feature of 

interest, and the remaining features are denoted by C. 

 
2.1 Example: partial‑dependence plots 

 
In this situation, the partial-dependence plot of f̂ with respect to xS can formally be defined 

as 
f̂ (x  ) = E   

 ̂ 
xS ,PDP    S X f (xS, XC ) 

= f̂(xS, x ) dP(x ) 
x 

C 

(Molnar, 2022). This plot, which can be generalized to more than one xs dimension, was 

introduced by Friedman (2001) to visualize main effects of predictors in machine-learning 
models. 

The approach outlined in this section can be applied to ALE plots and related model- 

agnostic tools, including permutation-based variable importance and their conditional 

modifications, or Shapley additive explanations (see reviews by Molnar et al, 2020; Mol- 

nar, 2022). 
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Partial-dependence plots have some disadvantages such as the extrapolation of f̂ beyond 

the region in X for which training data is available (Apley & Zhu, 2020; Molnar et al., 

2022). This is especially the case when predictors are strongly correlated, as in our case 

study. Nevertheless, without loss of generality, this simple plot type helps to illustrate the 

proposed approach. 

 
2.2 Transformed feature space 

 
When several predictors are strongly correlated and/or express the same domain-specific 

concept such as ‘early-season vegetation vigour’ in vegetation remote-sensing, we may 

be more interested in exploring the overall effect of these predictors. Principal component 

analysis (PCA) and related data transformation techniques such as factor analysis are tools 

that are often used by practitioners to synthesize and interpret multivariate data (for exam- 

ple, Basille et al, 2008; Rousson & Gasser, 2004; Cunningham & Ghahramani, 2015). 

More generally speaking, we could think of an invertible transformation function 

T ∶ X → W ⊂ ℝp
, w = T(x) 

that can be used to re-express the features in our data set. We will assume that T is continu- 

ous and differentiable. PCA is one such example, which has been considered recently by 

Seedorff and Brown (2021) with a focus on a practical algorithm and its implementation. 

Through the composition of the back transformation T−1
 and the model function f̂, we 

can now formally define a model ĝ on W, 

ĝ ∶= f̂◦T
−1

, 

which predicts the real-valued response based on ‘data’ in W although it was trained using 

a learning sample L ⊂ X in the untransformed space. 

We can use this to formally re-express the partial-dependence plot as a function of ws: 

f ̂ (w )=  E (f̂◦T−1)(w , w ) 
wS ,PDP      S wC S C 

= 
J 

(f ̂◦T−1)(w , w ) dPw 
wC 

 

Note that T−1
, when used only on data in T(X), does not create values outside the data- 

supported region X , and it therefore avoids extrapolation of f̂. 
Also, when choosing PCA for T as a data-driven approach, the variables in T(L) are 

linearly independent, and statistically independent if L arises from a multivariate normal 
distribution. Thus, the PCA approach overcomes one of the limitations of partial-depend- 

ence plots and broadens their applicability, at least in the case of linear dependencies. 

 
2.3 Partial orthogonalization 

 
In some instances, PCs (and other multivariate transformations) of large and complex fea- 

ture sets can be difficult to interpret, and analysts would therefore like to focus on indi- 

vidual features that are perhaps ‘representative’ of a larger group of features — for exam- 

ple, vegetation greenness in mid-June may be a good proxy for vegetation greenness a few 

weeks earlier and later, as expressed by other features in the feature set (Peña & Brenning, 

2015). 
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This can be addressed by proposing a transformation of X in which ws ∶= xs is 

retained, while making the remaining base vectors linearly independent of xs . This can 

be achieved through partial orthogonalization, 

wi ∶= xi − ai − bixs, (1) 

where ai and bi are the intercept and regression slope of a simple linear regression of xs on 

xi as the response. For simplicity of notation, it is assumed that the data is centered and 

standardized beforehand, in which case it simplifies to ai = 0, and bi equals the Pearson 
correlation coefficient. 

This then defines a linear transformation T ∶ X → W , which can be represented by its 
coefficient matrix. Note that T can be inverted using 

xi = wi + biws, (2) 

since xs = ws, and assuming that all bi < 1, which is the case when there are no duplicated 

features. A related iterative orthogonalization approach has previously been proposed in 
the context of feature ranking (Adebayo & Kagal, 2016). 

 

2.4 Partial orthogonalization for dependence plots along synthetic features 

 
Domain scientists may more generally want to visualize the effect of a real-valued func- 

tion of multiple features. As an example, knowing that several features are strongly cor- 

related, how does the response vary with their average, or, more generally, a linear or 

nonlinear function of the features? This information is sometimes hidden in an ocean of 

individual main-effects plots or variable-importance measures. 

In other situations, there may be simple process-based models that have the potential 

to provide deeper insights into black-box models based on domain knowledge. These 

models may be candidates for an enhancement of feature space, or they might express 

specific theories or hypotheses. 

Any of these transformations can be thought of as a real-valued function of the 

other features in the data set, h(x), which is added to the feature set as a new feature 
xp+1 ∶= h(x) to augment the feature space by one dimension. While this feature is not 

actually used by f̂, the partial orthogonalization technique offers an entry point to 

examine how h(x), through its (linear) contribution to x1, … , xp , impacts the predictions 
produced by f̂. 

In different use cases there may be different ways of constructing synthetic features of 

interest to the domain scientist: 

• A group of strongly positively correlated features could be averaged to obtain an over- 

all signal (examples: daily mean temperature when the actual features are hourly tem- 

peratures). 

• Contrasts between groups of features could be calculated (example: average of daytime 

temperature features minus average of nighttime temperature features as a measure of 

diurnal temperature amplitude). 

• A linear path can be drawn from one cluster centre to another, where cluster centres 

c1, … , c ∈ X are obtained by unsupervised clustering in feature space (for example, 

k-means). The path between clusters 1 and 2 is simply defined as tc1 + (1 − t)c2, etc. 
Here, an instance’s distance to a cluster centre could serve as a synthetic feature. 
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• A linear path between user-defined points in feature space; in remote sensing, for exam- 

ple, so-called endmembers representing spectral characteristics of ‘pure’ surface types 

such as asphalt or water (Somers et al., 2016). 

Evidently, these synthetic features could also be added to the feature set in a feature engi- 

neering step and used for model training. Nevertheless, the proposed approach provides an 

opportunity for a post-hoc assessment and visualization of the influence of such features on 

the model’s output. 

Technically, partial orthogonalization along synthetic features is achieved by (lin- 

early) partialing the effect of xp+1 out of the features x1, … , xp (Eq. (1)) — either out of 

all features, or out of the subset of features effectively involved in the calculation of h(x). 
In applying interpretation tools such as ALE plots or permutation methods, these features 

then need to be reconstructed from new values of xp+1, which is achieved by inverting the 

partial orthogonalization (Eq. (2)). 

 
2.5 Two‑dimensional model‑agnostic plots 

 
The proposed approaches are not limited to one-dimensional model interpretation along 

one selected feature xs ∈ ℝ — the methods equally apply to bivariate relationships 

x ∈ ℝ2
), which can be used to display pairwise interactions. Clearly, in a high-dimen- 

sional situation, the need to reduce dimensionality in post-hoc model interpretation is even 

more pressing when interpreting up to p(p − 1)∕2 pairwise interactions, and the proposed 
approach offers a practical tool to address this in situations where dimension reduction is 
viable. 

 

3 Implementation 
 

The proposed methods have been implemented in the R package wiml (code available at 

https://github.com/alexanderbrenning/wiml). It implements transformation functions called 

‘warpers’ based on PCA (of all features or a subset of features), structured PCA (for mul- 

tiple groups of features), and partial feature orthogonalization, all of which are based on 

rotation matrices and therefore share a common core. Due to the modular and object-ori- 

ented structure, users can implement their own transformations without requiring changes 

to the package. 

These warpers can be used to implement the composition f̂◦T−1
 by ‘warping’ a fit- 

ted machine-learning model. The resulting object behaves like a regular fitted machine- 

learning model in R, offering an adapted predict method. From a user’s perspective, the 

resulting model feels like it had been fitted to the transformed data T−1
(L), except that it 

hasn’t. This ‘warped’ fitted model can, in principle, be used with any model-agnostic tool 

that doesn’t require retraining. An implementation of the composition f ◦T−1
 involving the 

untrained model f is also available; this can be used for drop and relearn or permute-and- 
relearn techniques (Hooker et al., 2021). 

The package has been tested and works well with the iml package for interpretable 

machine learning (Molnar et al., 2018), but it can also be combined with other frameworks 

since it only builds thin wrappers around standard R model functions. Initial tests with 

the DALEX framework for explainable machine-learning (Biecek, 2018) and its interactive 

environment modelStudio (Baniecki & Biecek, 2019) have been successful, as have 

( 
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been tests with the pdp package (Greenwell, 2017). The wiml package does not re-imple- 

ment existing model interpretation routines. 

 
4 Case study 

 
The potential of the proposed methods is demonstrated in a case study from land cover 

classification, which is a common machine-learning task in environmental remote sensing 

(for example, Mountrakis et al, 2011; Peña & Brenning, 2015). One particularly challeng- 

ing task is the detection of rock glaciers, which, unlike ‘true’ glaciers, do not present vis- 

ible ice on their surface; they are rather the visible expression of creeping ice-rich moun- 

tain permafrost. In the present case study, we look at a subset of a well-documented data 

set consisting of a sample of 1000 labelled point locations (500 presence and 500 absence 

locations of flow structures on rock glaciers) in the Andes of central Chile (Brenning et al., 

2012). 

There are 46 features in total, which are divided into two unequal subsets: Six features 

are terrain attributes (local slope angle, potential incoming solar radiation, mean slope 

angle of the catchment area, and logarithm of catchment height and catchment area), which 

are proxies for processes related to rock glacier formation. The other 40 features are Gabor 

texture features (Clausi & Jernigan, 2000), which are designed to detect the furrow-and- 

ridge structure in high-resolution (1 m × 1 m) satellite imagery, in this case panchromatic 

IKONOS imagery (see Brenning et al, 2012, for details). The 40 Gabor features correspond 

to different filter bandwidths (5, 10, 20, 30 and 50 m), anisotropy factors (1 or 2), and 

types of aggregation over different filter orientations (minimum, median, maximum, and 

range). Sample maps of features and IKONOS imagery are shown in Fig. 2 of Brenning 

et al. (2012). 

Texture features with similar filter settings are often strongly correlated with each other. 

This is especially true for minimum and median aggregation with otherwise equal settings, 

and for maximum and range aggregation. Overall, the median of each feature’s strongest 

Pearson correlation is 0.92 (minimum: 0.80). Correlations among terrain attributes are 

much smaller (median strongest correlation: 0.60). Terrain attributes and texture features 

are weakly correlated (maximum correlation: 0.30). Correlation statistics are very similar 

for Spearman’s rank-based correlation. 

To explore the feature sets, PCAs is performed for the entire set of 46 feature and for 

the subset of 40 Gabor features (Fig. 1). In the entire feature set, 63.6% of the variance 

is concentrated in the first two PCs (first six PCs: 83.7%). In the more strongly correlated 

Gabor feature set, in contrast, the first two PCs make up 72.2% of the variance (first six 

PCs: 89.5%). The main PCs turned out to be interpretable by domain experts. PC #1 of 

the Gabor feature set (‘Gabor1’, in the figures) is basically an overall average of all texture 

features, meaning that it expresses the overall presence of striped patterns of any charac- 

teristics. Gabor PC #2 represents the contrast between minimum and median aggregated 

anisotropic Gabor features and the rest; large values are interpreted as incoherent patterns 

with no distinct, repeated stripe pattern. Gabor PC #3 expresses differences between large- 

wavelength range or maximum-aggregated features versus the short-wavelength features, 

which represents the heterogeneity in the width of stripes, and thus the size of linear sur- 

face structures. Large values correspond to distinct patterns of large amplitude. 

To test the partial orthogonalization along synthetic features, the role of a widely 

used terrain attribute that is not included in the original feature set is examined. The 
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Table 1 Overall accuracies of 

random-forest classification of 

rock glaciers using the entire 

 
All features Only terrain 

attributes 

 
Only 

texture 

features 
feature set, and omitting either    

the terrain attributes or the 

texture features 
Accuracy 0.808 0.757 0.697 

Decrease in accuracy 0.000 0.051 0.111 
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Fig. 1 Feature (sub)space diagrams. Top row: First PCs of the entire feature set. Bottom row: First PCs of 

the texture feature (sub-)set and the top-ranked terrain attributes 

 

topographic wetness index (TWI) is defined as the logarithm of the ratio of catchment 

area and the tangent of slope angle, which means that it is linear in one feature (loga- 

rithm of catchment area; correlation 0.94), and slightly curved in another one (slope 

angle; correlation −0.68). Partial orthogonalization is applied with respect to slope 

and log. catchment area while leaving the other features unchanged. For comparison 

with the synthetic-feature approach, a model with TWI as an additional feature is also 

trained. 

A random-forest classifier is used for the classification of rock glaciers based on the 

features introduced above. Its overall accuracy, estimated by spatial cross-validation 

between the two sub-regions (Brenning, 2012), is 80.8%. Omitting terrain attributes 

from the feature set has a greater impact on performance than omitting the texture fea- 

tures (Table 1). 
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Fig. 2 Ordinary ALE plots for all 46 features 

 

 

5 Results 
 

5.1 Standard approach 

 
With 46 features that are grouped into two semantic feature types (terrain attributes, texture 

features), it can be challenging to interpret the patterns represented by marginal effects plots 

(Fig. 2). Although there appears to be some consistency in direction among many of the tex- 

ture features, it is difficult to identify an overall pattern that can be summarized verbally, and 

it would be unreasonable to present such detailed visual information to a conference audience 

that is expecting a concise and coherent narrative. 
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5.2 Interpretation in transformed feature space 

 
The ALE plots along principal axes distill 71.6 percent of the feature variance into only 

three plots (Fig. 3). Nevertheless, considering the semantic differences and weak correla- 

tions between texture features and terrain attributes, it seems unnecessary to combine all 

features in a joint PCA, which results in PCs with an at least slightly mixed meaning in this 

purely data-driven transformation. 

The structured PCA approach, in contrast, allows us to explicitly separate the model’s 

representation of effects of texture features and terrain attributes, which is desirable from a 

domain expert’s perspective (knowledge-driven transformation) and statistically justifiable 

based on the weak correlations between these feature groups. Larger overall texture sig- 

nals (Gabor PC #1) are associated with higher predicted rock glacier probability, although 

extremely large PC #1 values are less discriminative since they may also occur along linear 

features such as eroded channels (Fig. 4). However, a large contrast between minimum/ 

median anisotropic texture features and the remaining texture features, as expressed by a 

high Gabor PC #2 value, is more often associated with an absence of rock glaciers. In other 

words, the absence of coherently oriented, repeated stripes is not typical of rock glaciers 

— these may be more typical of non-repeated stripes (for example, erosion gullies, jagged 

rock slopes). 

The permutation-based and SHAP-based assessments of the importance of texture PCs 

and terrain attributes both show that subsequent PCs contribute much less to the predictive 

performance, and that slope angle is the most salient feature overall (Fig. 5). Clearly, the 

combined importance of Gabor features as summarized by Gabor PCs #1 and #2 provides a 

more comprehensible summary than an incoherent litany of individual feature importances 

of strongly correlated features, which should not be permuted independently of each other 

(Fig. 6). 
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6 Discussion 
 

Overall, interpretation plots along the principal axes are capable of distilling complex 

high-dimensional relationships into low-dimensional summaries in a data-driven manner, 

thus providing a tidier, better structured and more focused approach to model interpreta- 

tion than traditional tools that focus on individual predictors in an ocean of highly corre-  
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lated features. This behaviour is highly desirable from a domain expert’s perspective, and 

applying it in a structured, knowledge-driven manner allows the analyst to honour domain 

knowledge and feature semantics. 

One concern in model-agnostic model interpretation is, or should be, the extrapolation 
from a training sample to a set of data points at which the model f̂ is evaluated. This is 
especially an issue for PD plots and permutation methods, which require stronger extrapo- 

lation than the locally operating ALE method, as well as for non-smooth models such as 

random forests. In conjunction with the proposed method, this extrapolation takes place in 

the transformed space W, and as a consequence, it may be exacerbated or reduced, depend- 

ing on the local properties of the transformation T. This is an issue that users should be 

aware especially when working with sparse data, such as multimodal data distributions. 

Of course fitting the classifier to PCA-transformed data as input features could have 

provided direct access to ALE plots along principal axes. However, we would want our 

feature engineering decisions to be directed towards improving predictive performance, 

and we would therefore prefer not to risk compromising an optimal per- formance to 

satisfy our desire to interpret our model. While this is not an issue in the present case 

study (overall accuracy 0.789 with PC features versus 0.808 with the orig- inal 

predictors), our experience shows that PCA-transformed predictors can worsen the 

predictive performance. Also, model-agnostic post-hoc analysis tools are precisely meant 

to be applicable to black-box models that are provided ‘as is’, without the pos- sibility of 

altering their input features, in which case the proposed ‘hands-off’ access to transformed 

perspectives is particularly valuable. 

 

The proposed use of PCA and related linear transformation technique appears to be in 

contradiction to the use of complex nonlinear machine-learning models. Neverthe- 

less, it could be argued that linear cross-sections of feature space along the original 

feature axes are no less arbitrary and limiting, considering the often strong correla- 

tions with other features that would have to be interpreted simultaneously. From that 

perspective, principal axes provide a ‘tidier’ perspective and smarter peek into feature 

space than traditional ALE or partial-dependence plots. Linear transformations similar 

to PCA may further enhance interpretability by offering a more structured or target- 

oriented perspective based on simple components (Rousson & Gasser, 2004) or discri- 

minant functions (Cunningham & Ghahramani, 2015). 

Beyond linear transformations, the proposed approach provides a general frame- 

work even for nonlinear perspectives on feature space and model functions. In par- 

ticular, paths proposed in Sect. 2.4 may be nonlinear, as, for example, defined by a 

physical model that could be used by domain experts to check model plausibility in a 

knowledge-driven way. Nevertheless, especially nonlinear transformations should only 

be used in conjunction with interpretation tools such as ALE plots and SHAP values 

that aim to preserve correlations among features, and non-monotonic mappings should 

be avoided. 
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7 Conclusions 
 

Despite the inherent limitations of post-hoc machine-learning model interpretation, fea- 

ture-space transformations, and structured PCA transformations in particular, are a power- 

ful tool that allows us to distill complex nonlinear relationships into an even smaller num- 

ber of univariate plots than previously possible, representing perspectives that are informed 

by domain knowledge. These transformations provide an intuitive access to feature space, 

which can be easily wrapped around existing model implementations. Model interpretation 

through the lens of feature transformation and dimension reduction allows us to peek into 

the feature space at an oblique angle — a strategy that many of us have have successfully 

applied when checking if our kids are asleep, and a much more successful strategy than 

staring along the walls, that is, the original feature axes, especially when these are nearly 

parallel. 
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