
FIFO MEMORY USING SHIFT REGISTER

Mr. AVN HANUMAN
1
, Mrs. NAVEEN GEDELA

2

1
Associate Professor, International School of Technology and Sciences for Women, Rajanagaram,

Andhra Pradesh-533294.

2
Assistant Professor, International School of Technology and Sciences for Women, Rajanagaram,

Andhra Pradesh-533294.

ABSTRACT

 Because of flexibility of application and high cost performance, the low-and-middle end FPGA

has obtained an extensive market. As a fundamental memory structure, the FIFO memory is widely

used in FPGA based project in various manners. But limited by the resources in chip and imperfection

of development tools, the problem that the number of memory is insufficient while the overall capacity

is enough often occurs in the implementation of multi-channel FIFO. This paper surveys various

occasions of applications of multi-channel FIFO and put forward a method to achieve multichannel

FIFO in a single FPGA Block RAM, which would support the parallel access to one port. The method

may help to solve the problem mentioned above and improve the utilization of storage resources

obviously. The steps of implementation and partial source code are present together with the detail

analysis of simulation timing. Practical application indicates that the method is successful and effective.

Key words: FIFO, FPGA, XYLINK.

1. INTRODUCTION

The transfer of data over a point-to-

point or point-to-multi point communication

channel. Examples of such channels are copper

wires, optical fibers, wireless communication

channels, storage media and computer buses.

Earlier days to achieve the high speed we were

using parallel/serial transmission. In parallel

transmission, Binary data consisting of 1s and

0s which are transmitted in framing/streaming.

By grouping, we can send data n bits at a time

instead of one. We use n wires to send n bits at

one time. That way each bit has its own wire,

and all n bits of one group can be transmitted

with each clock pulse from one device to

another. Form = 8. Typically, the n number of

bits are bundled in a frame with a connector at

each end that may be 2:4:8:16:32. The

advantage of parallel transmission is speed. All

else being equal, parallel transmission can

increase the transfer speed by a factor of n over

serial transmission. Insignificant disadvantage

of parallel transmission is cost. In serial

transmission one bit follows another, so we

need only one communication channel rather

than n to transmit data between two

communicating devices. The advantage of

serial over parallel transmission is that with

only one communication channel, serial

transmission reduces the cost of transmission

International Journal of Engineering Science and Advanced Technology (IJESAT) Vol22 Issue 08,2022

ISSN No: 2250-3676 www.ijesat.com Page 1

over parallel by roughly a factor of n Since

communication within devices is parallel,

conversion devices are required at the interface

between the sender and the line (parallel-to-

serial) and between the line and the receiver

(serial-to parallel). Serial transmission occurs

in one of two ways; asynchronous or

synchronous. With the rapid development of

FPGA technology, PFGA is widely used in the

field of communication, medical instrument,

consumer electronics, display, portable

terminal, and so on. Among various levels of

FPGA, the low-and middle-end FPGA has won

a wide market due to its low cost, high

performance, technical maturity and short

design cycle. As a fundamental storage

structure in the design of system based on

FPGA, FIFO is usually used as data buffer of

digital signal processing system,

Communication Bridge between network of

different data rates and communication

interface between modules in different clock

domain. Sometimes, in practice, it is needed to

combine more than one FIFO into a new

structure as multi-channel FIFO, according to

rule of access to it, multi-channel FIFO

generally can be classified into four categories

as follows: 1) Serial Input and Serial Output

FIFO (SISOFIFO), each channel of SISOFIFO

is independent, no parallel operation at read

port or write port ispermitted, i.e., the data of

the SISOFIFO is written in channel by channel

and read out channel by channel. there is no

constraint for access among channels; 2) Serial

Input and Parallel Output FIFO (SIPOFIFO),

just as its name implies, data of the SIPOFIFO

is written in channel by channel but read out at

the same time; 3) Parallel Input and Serial

Output FIFO (PISOFIFO), the data of the

PISOFIFO is written in at the same time but

read out channel by channel, namely, the write

port should be able to be accessed in parallel;

4) Parallel Input and Parallel Output FIFO

(PIPOFIFO), the data of the PIPOFIFO is

written in simultaneously and read out

simultaneously, in other words, both ports of

PIPOFIFO should be able to be accessed in

parallel.

2. LITERATURE SURVEY

In the previous section we mentioned that NoC

is composed of elements like FIFO’s (Virtual

channels), Interconnects, Arbitration logic etc.

The access mechanism in buffer structure plays

an important role in the design of NoC

applications. In turn, the mechanism influences

how efficiently packets share link bandwidth.

Buffers are used to store packets or flits when

they cannot be forwarded right away onto the

output port. Queuing buffers consume the most

area and power among building blocks in the

NoC [1, 2, 27]. We have investigated related

work as follows:

SHORT FIXED LENGTH QUEUE: In short

fixed length queue, each physical channel of

router has single queue. The arriving flit is

stored at the tail of the queue. The flit present

at head is read and forwarded to output channel

through crossbar. The single queue buffer has

fixed and short length, therefore, upstream

router keep strack of free buffers. The flit is

forwarded to downstream router only when a

free buffer is available. The single queue buffer

may lead to the problem of HoL blocking.

MULTIPLE FIXED LENGTH QUEUE: In

multiple fixed length queues, each input

physical channel has multiple queues of fixed

length that helps in removing the HoL problem

to certain extent. The collective representation

of queue is called a Virtual Channel. The

virtual channel provides multiplexing of

International Journal of Engineering Science and Advanced Technology (IJESAT) Vol22 Issue 08,2022

ISSN No: 2250-3676 www.ijesat.com Page 2

incoming flits at different queues. Thus,

physical channel bandwidth sharing becomes

efficient in VC based NoC.

MULTIPLE VARIABLE LENGTH QUEUES:

The above discussed buffers are fixed in

length. This may lead congestion in the

network when there is abnormal traffic pattern.

There may be many empty virtual channels that

could not be utilized. This situation leads to

poor buffer utilization and low throughput. To

overcome this problem, a variable length

multiple queues have been proposed. This

mechanism provides better buffer utilization

but at the cost of complex circuitry. The design

needs a complex data structure to keep track of

head and tail of queue.

Existing system:

DFF-BASED QUEUING BUFFER DESIGN:

The queuing buffer can be implement using

flip-flop register and SRAM. In this discussion

we will present four different design consists of

flip-flop registers.

presents a conventional shift-register that is

made offlip-flops. The data is written from one

end and retrieved at other. The structure helps

in synchronization of data between sender and

receiver. However, the register can create

bubble cells when the packet input and output

rates are different. The design is simple but not

suitable for NoC communications. To remove

the problem of empty bubble, the arrival packet

can be stored at the front empty cell rather than

at the tail of a queue. “push-in” technique to

avoid the bubble problem.

3. PROPOSED NOC CROSSBAR

ARCHITECTURE

We propose a new solution for the remaining

three kinds of multi-channel FIFO to

implement them in one Block RAM. As to

SISOFIFO, the channels are independent and

there are no timing constraints among them, so

it is relatively easy to achieve. In the coming

sections, we would concentrate our attention on

the implementation of SIPOFIFO and

PISIFIFO in one BlockRAM, it can

significantly improve utilization of

BlockRAM, reduce the cost of product and

help to enhance market competitiveness.

BASIC FIFO: From the analysis above, we

have to implement multi-channel FIFO in one

Block RAM and provide write or read

operation in parallel to some extent. It's

obviously impossible to realize write or read

operation at the same time for multiple FIFOs

that built in one Block RAM directly. In order

to solve the problem of parallel access, it is

necessary to place registers into the ports with

function of parallel access as data buffer. The

width of data buffer should be set in accord

with the width of corresponding channel, and

the depth is decided by the level of parallel

access operation. The general structure of

multi-channel FIFO is depicted in Figure 2. It

is mainly composed of write control logic,

DPRAM, read control logic and input/output

International Journal of Engineering Science and Advanced Technology (IJESAT) Vol22 Issue 08,2022

ISSN No: 2250-3676 www.ijesat.com Page 3

buffering registers. The buffering registers are

located at the parallel port, i.e., write port for

PISOFIFO, and read port for SIPOFIFO.

DPRAM can be instantiated from Block RAM

with IP core generator. Simple DPRAM is

enough here because there is only one write

port and so half of memory capacity can be

saved by this means. Each channel have its

own private memory space in the DPRAM, all

the private memory spaces can't be overlapped.

The read control logic and write control logic

are relatively complex and there are differences

in their structure between the scenes of serial

access and parallel access, we'll describe this in

detail later.

Parallel Write Control Logic: Parallel write

control logic is designed to receive input data

of all channels and write them into the

DPRAM at corresponding area. The structure

of write control logic in parallel is depicted in

Figure 3. After receive a parallel write

command, i.e. when wr_en x is active, the

input data of all channels are registered. On

detecting of data coming, the internal write

control logic would activate the internal write

signals for every channel in turn to fetch the

data from registers and write to the DPRAM at

corresponding memory area. Here is how it

works

Step 1. The control logic enters the idle state

when system resets, all the labels are initialized

at this time, e.g. p_write_ready, the label of

write in parallel getting ready, is set to 1.

Step 2. When wr_enx is active, internal control

logic accepts the input data of all channels and

then stores them in corresponding buffering

registers. p_write_ready is set to 0. A new

external write command would not be accepted

before p_write_ready is set to 1 again.

Step 3. Set write_in_process to 1, which means

the control logic is enter the procedure of

carrying data from buffering registers to

DPRAM.

Step 4. Internal control logic generates the

internal write command vector wr_eni, this

causes a internal write operation for each

channel, take channel 0 for example, the

internal write operation goes as follows:

Step 5. Number of write channel is decided by

ch_write, it is set to 0 firstly, i.e., the first

channel is selected;

Step6. The write address of DPRAM wr_addr

is a combination of ch_write and write_p_0,

i.e., wr_addr={ch_write,write_p_0}, where

write_p_0 means the write address pointer of

channel 0.

Step 7. The LSB of the internal write

commands vector wr_eni is set to 1, and the

input data of channel 0 is written to

corresponding memory area in DPRAM ;

Step 8. Write address pointer write_p_0 is

increased by 1

Step 9. Write channel number ch_write is

increased by 1, so the next channel is selected;

Step 10. The remaining channels write data to

DPRAM in the same way as channel 0 in

accordance with the operation sequence from

step 5 to step9 above;

International Journal of Engineering Science and Advanced Technology (IJESAT) Vol22 Issue 08,2022

ISSN No: 2250-3676 www.ijesat.com Page 4

Step 11. After the whole parallel write

operation is completed, and if the FIFO is not

full, p_write_ready is set to 1 to show the write

control logic is ready for the next write

operation;

SIPO

SISO

International Journal of Engineering Science and Advanced Technology (IJESAT) Vol22 Issue 08,2022

ISSN No: 2250-3676 www.ijesat.com Page 5

PISO

4. CONCLUSION

This paper introduces a method of

implementation of multi-channel FIFO with the

utility of parallel access in a single piece of

Block RAM. This method can help to make

full use of limited Block RAM resources in

FPGA and reduce the cost of terminal product,

and it shows some practical value in project

base on low-cost FPGA design. The simulation

test and practical application indicate that this

method is correct. The multi-channel FIFO

created with it can run at a high frequency and

is suitable for integration in most FPGA based

projects.

International Journal of Engineering Science and Advanced Technology (IJESAT) Vol22 Issue 08,2022

ISSN No: 2250-3676 www.ijesat.com Page 6

REFERENCES

[1] Z.Lu, Y.Wu, “A Rotation-based Data

Buffering Architecture for Convolution

Filtering in a Field Programmable Gate Array”,
Journal of Computers, 8(6): pp.1411- 16, 2013.

[2] S.Kasap and K.Benkrid, “Parallel Processor

Design and Implementation for Molecular

Dynamics Simulations on a FPGA-Based

Supercomputer”, Journal of Computers, 7(6):

pp.1312-1328, 2012.

[3] A.M.Fernandes, “HDL Based FPGA

Interface Library for Data Acquisition and

Multipurpose Real Time Algorithms”, IEEE

Transactions on Nuclear Science, vol.58, pp.

1526-1530, 2011.

[4] A.Afaneh, Y.He, “Implementation of

accurate frame interleaved sampling in a low

cost FPGA-based data acquisition system”,
International Conference on Intelligent Data

Acquisition and Advanced Computing

Systems, IEEE, pp.20-25, Sept. 2011.

[5] G..W.Zhong; H.B.Zheng, et al., “1024-

point pipeline FFT processor with pointer

FIFOs based on FPGA”, International

Conference on VLSI and System-on-Chip,

IEEE, pp.122-125, Oct. 2011.

[6] H.S.Han, K.S.Stevens, “Clocked and

asynchronous FIFO characterization and

comparison”, IEEE International Conference

on Very Large Scale Integration Oct, IEEE,

pp.101-108, 2009

[7] Xilinx Inc, LogiCORE IP FIFO Generator

v8.2, http://www.xilinx.com, 2011.

[8] Xilinx Inc, LogiCORE IP Block Memory

Generator v6.2, http://www.xilinx.com, 2011

[9] M.A.Khan, A.Q.Ansari, “n-Bit multiple

read and write FIFO memory model for

network-on-chip” ， World Congress on

Information and Communication Technologies,

IEEE, pp.1322-1327, Dec. 2011.

[10] Xilinx Inc, ISE Design Suite Software

Manuals, http://www.xilinx.com, 2011.

International Journal of Engineering Science and Advanced Technology (IJESAT) Vol22 Issue 08,2022

ISSN No: 2250-3676 www.ijesat.com Page 7

