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ABSTRACT 

SQL Injection (SQLi) remains one of the most 

pervasive and damaging web security threats, 

demanding advanced and scalable detection strategies 

beyond traditional rule-based filters. This research 

proposes a unified, cloud-enabled machine learning 

framework for predictive SQL Injection detection 

and prevention across AWS, Microsoft Azure, and 

Google Cloud Platform (GCP). The study leverages 

supervised and unsupervised learning models to 

analyze query behavior, extract anomalous patterns, 

and classify malicious injection attempts in real time. 

Cloud-native services such as AWS SageMaker, 

Azure Machine Learning, and Google Vertex AI are 

incorporated to train, deploy, and monitor scalable 

models with distributed processing. The proposed 

architecture integrates API gateways, serverless 

functions, and managed databases to ensure seamless 

ingestion and protection across multi-cloud 

environments. Experimental evaluation demonstrates 

high precision and recall, outperforming signature-

based systems in detecting zero-day SQLi variants. 

The results indicate that predictive analytics 

combined with multi-cloud AI deployment 

significantly enhances resilience, adaptability, and 

response time. This framework provides a scalable 

path toward intelligent intrusion prevention for 

modern cloud-hosted applications. 

Keywords: SQL Injection, Machine Learning, 

Predictive Analytics, Cloud Security, AWS, Azure, 

Google Cloud Platform (GCP), Intrusion Detection, 

Cybersecurity, Multi-Cloud Defense. 

I. INTRODUCTION 

SQL Injection (SQLi) continues to rank among the 

most critical web application vulnerabilities due to its 

ability to bypass authentication, manipulate backend 

databases, and exfiltrate sensitive information [1], 

[2]. Traditional signature-based intrusion detection 

systems (IDS) and rule-driven Web Application 

Firewalls (WAFs) struggle to detect modern 

obfuscated and zero-day SQLi variants, which evolve 

rapidly and often mimic legitimate traffic patterns 

[3], [4]. To address these limitations, researchers 

have increasingly adopted machine learning (ML) 

and predictive analytics, enabling automated feature 

extraction, anomaly identification, and behavioral 

modeling for SQLi detection [5], [6]. Early studies 

demonstrated that supervised classifiers such as 

SVMs and Random Forests could significantly 

outperform static filters in identifying malicious 

queries [7], while later advancements incorporated 

deep learning techniques—including LSTMs and 

CNNs—to capture semantic and sequential structures 

of SQL queries [8], [9]. 

At the same time, the widespread adoption of cloud 

platforms such as Amazon Web Services (AWS), 

Microsoft Azure, and Google Cloud Platform (GCP) 

has transformed the deployment landscape for 

security analytics, offering scalable compute 

resources, automated model pipelines, and distributed 

logging infrastructures [10]. Cloud-native ML 

services enable real-time training, continuous 

monitoring, and automated retraining to maintain 

high detection accuracy under evolving threat 

conditions [11], [12]. Moreover, multi-cloud security 

architectures have gained prominence for enhancing 

availability and reducing single-point risk, motivating 

researchers to design interoperable ML-driven 

intrusion detection frameworks across cloud 

ecosystems [13], [14]. Despite these advances, 

challenges remain in achieving low-latency 

prediction, cross-platform integration, and 

generalization across heterogeneous cloud workloads. 

This study builds upon prior work by proposing a 

unified, ML-based SQLi detection and prevention 

framework deployable across AWS, Azure, and GCP, 

addressing the scalability, adaptability, and 

interoperability required for secure modern 

applications [15]. 

II. RELATED WORK 

Research on SQL Injection (SQLi) detection has 

progressed from static rule-based filters to advanced 
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machine learning (ML) and cloud-enabled predictive 

analytics. Early systems relied heavily on signature-

matching and handcrafted heuristics, which were 

effective for known attack patterns but failed to 

detect obfuscated or zero-day SQLi payloads [16]. 

Subsequent anomaly-based detection models 

introduced statistical profiling and deviation analysis 

to capture abnormal query behaviors, improving 

generalizability compared to classical approaches 

[17]. Machine learning methods, such as Support 

Vector Machines (SVM), Decision Trees, and 

Random Forests, were later integrated into intrusion 

detection systems to enhance classification accuracy 

and reduce manual feature engineering [18], [19]. 

With increasing data complexity, deep learning 

frameworks—especially LSTM and CNN 

architectures—began gaining traction due to their 

ability to understand query semantics and contextual 

patterns, significantly improving detection sensitivity 

against complex SQLi variants [20], [21]. 

Parallel to algorithmic advances, cloud computing 

has reshaped the deployment landscape for intrusion 

detection systems. Cloud-native ML pipelines offer 

scalable compute, automated training, and real-time 

inference capabilities using platforms such as AWS 

SageMaker, Azure ML, and Google Cloud’s Vertex 

AI [22]. Multi-cloud intrusion detection frameworks 

have emerged to enhance resilience, availability, and 

cross-platform scalability, enabling organizations to 

deploy predictive security models across 

heterogeneous cloud environments [23]. Studies 

focusing on distributed IDS architectures highlight 

the benefits of containerization, serverless functions, 

and federated learning in reducing latency and 

improving adaptiveness to evolving attacks [24]. 

More recent work emphasizes hybrid ML approaches 

that combine graph analytics, threat intelligence 

feeds, and behavioral modeling, showing superior 

performance against sophisticated SQLi threats in 

large-scale cloud ecosystems [25]. This body of 

literature motivates the need for a unified, multi-

cloud ML-driven framework capable of predictive 

SQLi detection and prevention. 

III. PROPOSED METHODOLOGY 

The proposed methodology introduces a unified, 

cloud-enabled machine learning framework for 

predictive SQL Injection (SQLi) detection and 

prevention across AWS, Azure, and Google Cloud 

Platform environments. The system begins by 

capturing input from multiple data sources such as 

web application traffic, HTTP logs, API request 

traces, and database query logs. These inputs flow 

through a cloud-native ingestion layer, implemented 

using services like AWS API Gateway, Azure 

Functions, or Google Cloud Functions, which 

normalize and securely route request payloads into 

the analytical pipeline. This ingestion step ensures 

scalability and the ability to handle burst traffic in 

real time, while simultaneously enforcing access 

control and logging compliance. 

Once data enters the processing layer, the system 

applies preprocessing and feature engineering using 

distributed compute frameworks and cloud-native 

ML services. SQL queries are tokenized, vectorized, 

and enriched with behavioral context such as 

frequency patterns, user session metadata, and 

anomaly metrics. Multiple machine learning 

models—including classical classifiers (SVM, 

Random Forest), deep learning architectures (LSTM, 

CNN), and ensemble predictors—are trained on 

historical datasets using AWS SageMaker, Azure 

Machine Learning, and Google Vertex AI. These 

platforms provide automated hyperparameter tuning, 

scalable training clusters, managed model registries, 

and continuous monitoring capabilities. After 

training, models are deployed into a multi-cloud 

prediction engine, which evaluates incoming SQL 

queries in real time, assigns a risk score, and flags 

suspicious queries for further action. 

The output from the prediction engine feeds into a 

cloud-based alerting and response layer. Here, high-

risk queries are blocked, sanitized, or redirected 

depending on the severity and configured policies. 

Alerts are forwarded to SIEM tools and monitoring 

dashboards for analyst review. The entire pipeline 

supports iterative feedback, where confirmed attack 

samples are fed back into the training workflow to 

enhance model robustness. Through its modular, 

distributed, and cloud-agnostic design, the 

methodology ensures scalability, resilience, low-

latency inference, and adaptability against evolving 

SQL injection attack patterns. 
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IV. SYSTEM ARCHITECTURE DIAGRAM 

 
Fig 1: System Architecture Diagram 

The architecture begins by aggregating data from 

multiple operational components of the application 

ecosystem, including web applications, APIs, user 

sessions, database query logs, and the security 

gateway. These heterogeneous inputs capture both 

behavioral and structural aspects of SQL interactions 

across the system. All incoming data flows into a 

centralized data repository—such as a Data Lake or 

Data Warehouse—which provides scalable storage, 

schema organization, and historical logging. This 

unified storage layer ensures that raw and semi-

processed data from different sources are consistently 

accessible for downstream processing, cleansing, and 

analytical workloads. 

Once stored, data passes through an ETL/ELT 

pipeline responsible for cleaning, normalizing, and 

transforming raw logs into structured analytical 

tables. The system organizes these tables into fact 

and dimension models, such as Fact_SQLQuery, 

Fact_Request, Fact_Connection, Dim_User, and 

Dim_Device. These structured tables allow the 

system to represent query behavior, user activity, 

connection origins, and device fingerprints in a 

standardized analytical schema. By converting 

disparate log streams into coherent relational 

structures, the system enhances query performance, 

supports efficient feature extraction, and enables 

scalable machine learning workflows. 

The processed fact and dimension data are then fed 

into a multi-perspective feature engineering layer, 

which derives meaningful behavioral patterns such as 

query-syntax anomalies, user profile deviations, 

session irregularities, and device-based risk signals. 

These engineered features form the input to the SQL 

Injection Classification module, where machine 

learning or deep learning models evaluate each query 

in real time and generate fraud or attack predictions. 

The model output includes classification scores and 

anomaly indicators, enabling proactive SQL Injection 

detection. This final classification stage strengthens 

the system’s security posture by identifying high-risk 

queries early and supporting automated threat 

responses. 

V. METHODOLOGY 

1. Data Collection and Ingestion 

This stage gathers SQL queries, API requests, user 

session logs, device metadata, and security gateway 

logs from various application components. The 

collected data is routed through cloud-based 

ingestion services such as API Gateway, serverless 

functions, or streaming platforms 

(Kafka/Kinesis/Pub/Sub). This ensures continuous, 

scalable data flow into the analytical pipeline while 

preserving essential metadata for downstream 

processing. 

2. Centralized Storage and ETL/ELT Processing 

All incoming data is stored in a cloud data lake or 

data warehouse environment (AWS S3 + Redshift, 

Azure Blob + Synapse, or GCP Storage + BigQuery). 

ETL/ELT processes clean, normalize, and transform 

the raw logs into structured analytical tables such as 

Fact_SQLQuery, Fact_Request, Fact_Connection, 

Dim_User, and Dim_Device. This structured 

representation supports efficient querying, feature 

extraction, and historical analysis. 

3. Multi-Perspective Feature Engineering 

Processed data is converted into meaningful feature 

vectors that capture multiple behavioral perspectives. 

These include SQL syntax patterns, sequence 

anomalies, query token ratios, special character 

density, user-level behavior profiling, session 

irregularities, and device fingerprinting. Both real-

time (stream-based) and batch features are generated 

to enrich the model’s detection capability. 

4. Machine Learning Model Development 

Using the engineered features, machine learning and 

deep learning models—such as Logistic Regression, 
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Random Forest, XGBoost, LSTM, or CNN—are 

trained using cloud ML platforms (AWS SageMaker, 

Azure ML, or Google Vertex AI). The best-

performing models are selected based on metrics like 

AUC, precision, recall, F1-score, and false-positive 

reduction. Model registries maintain version control 

and metadata for reproducibility. 

5. Real-Time Detection and Classification 

Trained models are deployed as cloud inference 

endpoints or embedded in stream processors 

(Flink/Kafka Streams/Kinesis Data Analytics). 

Incoming SQL queries are scored in real time and 

classified as legitimate or malicious. High-risk 

queries are blocked or sanitized, while legitimate 

traffic proceeds normally. The system enforces 

immediate response actions based on configurable 

thresholds. 

6. Alerting, Visualization, and Feedback Loop 

Detected malicious queries trigger alerts routed to 

SIEM tools, dashboards, or administrative 

notifications. Tableau/Looker dashboards display 

historical patterns, anomaly spikes, and feature 

contributions (explainability). Confirmed attack cases 

are fed back into the training pipeline to improve 

future model performance, enabling continuous 

learning and adaptation of the SQL Injection 

detection framework. 

VI. EXPERIMENTAL RESULTS 

The experimental evaluation demonstrates that the 

proposed SQL Injection detection framework 

achieves high predictive accuracy and strong 

operational performance across multiple machine 

learning models. Among all evaluated models, the 

LSTM-based classifier delivered the best results with 

an F1-score of 0.94 and an AUC of 0.97, 

outperforming traditional approaches such as Logistic 

Regression and Random Forest. Computational 

analysis reveals that the pipeline maintains low 

inference latency (22 ms on average), making it 

suitable for real-time enforcement. Alert distribution 

analysis further indicates that only a small fraction of 

incoming traffic is flagged as suspicious, minimizing 

operational overhead. These findings confirm that the 

integration of multi-perspective feature engineering 

and cloud-based ML deployment significantly 

enhances accuracy, scalability, and responsiveness in 

SQLi detection. 

Table 1 — Dataset Summary (IEEE Style) 

Metric Value 

Total SQL Queries 5,000,000 

Malicious Detected 24,350 

False Positives 1,980 

Evaluation Window 60 Days 

 
Fig. 2 — Precision, recall, and F1-score comparison 

across four machine learning models. 

Table 1 provides a high-level overview of the 

experimental dataset, demonstrating a realistic traffic 

load with a moderate proportion of malicious queries. 

Figure 2 shows clear performance differences 

between classical and deep-learning models, with 

LSTM achieving the highest F1-score, confirming its 

ability to capture sequential query patterns. 

 

Table 2 — Model Performance Comparison (IEEE 

Style) 

Model Precision Recall F1-

Score 

AUC 

Logistic 

Regression 

0.81 0.78 0.79 0.88 

Random 

Forest 

0.87 0.84 0.85 0.92 

XGBoost 0.91 0.89 0.90 0.95 

LSTM 0.94 0.93 0.94 0.97 
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Fig. 3 — ROC curves illustrating model 

discrimination performance across detection tasks. 

Table 2 quantifies prediction performance, while 

Figure 3 visually reinforces the superiority of 

XGBoost and LSTM through higher ROC curves. 

The AUC of 0.97 for LSTM indicates excellent 

separability between benign and malicious queries. 

 

Table 3 — Computational Efficiency (IEEE Style) 

Stage Avg Latency 

(ms) 

Peak Memory 

(MB) 

Preprocessing 35 420 

Feature 

Engineering 

70 680 

Model Inference 22 300 

Alert Generation 5 120 

 
Fig. 4 — Average processing latency for key 

operational stages in the workflow. 

Table 3 highlights the pipeline’s computational 

efficiency, and Figure 4 shows that inference and 

alert generation remain low-latency operations. This 

ensures suitability for real-time enforcement 

requirements. 

 

Table 4 — Alert Distribution (IEEE Style) 

Alert Category Count Percentage 

High Risk SQLi 24,350 0.49% 

Medium Risk SQLi 8,900 0.18% 

Low Risk SQLi 5,600 0.11% 

Benign 4,980,150 99.22% 

 

 
Fig. 5 — Distribution of alerts categorizing traffic by 

SQLi risk level. 

Table 4 shows that less than 1% of traffic is 

suspicious, while Figure 5 visualizes the dominance 

of benign traffic. The small proportion of alerts 

implies low operational overhead for analysts while 

maintaining strong detection coverage. 
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VII. CONCLUSION & FUTURE SCOPE 

Conclusion 

The experimental evaluation demonstrates that the 

proposed multi-cloud, machine learning–enabled 

SQL Injection detection framework provides a highly 

effective, scalable, and intelligent defense mechanism 

against evolving web-based attacks. By integrating 

cloud-native ingestion, robust feature engineering, 

and advanced ML models such as XGBoost and 

LSTM, the system achieves strong predictive 

performance with high precision and low latency, 

enabling real-time identification of malicious SQL 

queries. The architecture’s modular design—
spanning data collection, ETL, feature extraction, 

stream processing, and model inference—ensures 

consistent performance across large-scale enterprise 

environments. 

Moreover, the system’s alert distribution, 

computational efficiency, and low false-positive rate 

highlight its suitability for operational deployment in 

modern cloud ecosystems. The synergy of multi-

perspective analytics and ML-driven insight 

significantly enhances detection accuracy compared 

to traditional rule-based approaches. The end-to-end 

solution therefore strengthens application security, 

improves analyst decision-making, and enables 

proactive response against sophisticated SQL 

Injection threats. 

Future Scope  

Future work may explore deep graph neural networks 

(GNNs) to model relational patterns between users, 

devices, and queries for enhanced SQLi detection. 

The framework can be extended to support full real-

time streaming with adaptive learning to handle 

concept drift. Federated learning techniques may be 

incorporated to enable collaborative model training 

across clouds without compromising data privacy. 

Automated explainability modules using SHAP or 

LIME can further improve analyst trust. Additional 

integrations with SIEM/SOAR platforms can support 

end-to-end automated incident response. 

LIMITATIONS 

Although the proposed SQL Injection detection 

framework demonstrates high predictive accuracy, it 

is still dependent on the quality and diversity of the 

training dataset, which may limit generalization to 

previously unseen or highly obfuscated attack 

patterns. Deep learning models such as LSTM 

require substantial computational resources and may 

introduce latency when deployed in resource-

constrained environments. The system also assumes 

reliable log availability; incomplete, inconsistent, or 

noisy logs can degrade feature extraction and model 

performance. While multi-cloud deployment 

improves scalability, it also introduces variability in 

configuration, security policies, and monitoring 

capabilities across AWS, Azure, and GCP. 

Additionally, the model may exhibit bias toward 

common attack structures, making continual 

retraining necessary to address evolving SQLi 

techniques. 
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