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ABSTRACT: 

Parkinson's Disease (PD) is a neurodegenerative disorder marked by motor and non-motor symptoms, where early 

diagnosis and accurate prediction of disease progression are crucial for effective management. This study 

investigates the use of an Ensemble Ridge Classifier to predict the onset and progression of PD using a 

comprehensive dataset comprising 4,000 clinical samples, including motor and non-motor symptoms as well as 

imaging features. The Ensemble Ridge Classifier, which integrates multiple ridge regression models, addresses 

challenges such as overfitting, underfitting, and model bias, thereby enhancing prediction accuracy and 

robustness. Applied to the dataset, the model achieves an impressive 98% accuracy, with a Receiver Operating 

Characteristic (ROC) score of 98.4%, demonstrating superior performance compared to individual classifiers. 

Additionally, the approach highlights the classifier's ability to identify key features that contribute to disease 

progression, offering valuable insights for personalized treatment strategies. This research emphasizes the 

potential of ensemble learning in early PD diagnosis and monitoring, making it a promising tool for clinical 

decision support and effective disease management. 

INTRODUCTION: 

Problem Introduction and Classification Approach 

The early and accurate diagnosis of Parkinson’s Disease (PD), a progressive neurodegenerative disorder that 

impairs motor control, is critical for effective treatment and enhancing the quality of life for patients. Symptoms 

such as tremors, rigidity, and bradykinesia (slowness of movement) become more pronounced as the disease 

progresses. However, diagnosing PD at its early stages remains challenging, especially when relying on traditional 

clinical assessments that are often subjective and prone to human error. This difficulty underscores the need for 

more reliable, objective methods for detecting the disease in its initial phases. In recent years, machine learning 

(ML) algorithms have emerged as powerful tools to assist in PD diagnosis, particularly by analyzing data from 

wearable sensors, motion capture systems, and medical imaging. For example, Yang et al. (2022) proposed a 

deep learning approach for gait classification using sensors, highlighting the potential of ML in leveraging 

objective data to predict PD symptoms from movement patterns. Despite their promise, these models often face 

key challenges such as overfitting, underfitting, and biases in the dataset that may stem from varying data sources 

or collection conditions (Guarín et al., 2022). These issues hinder the generalizability and reliability of ML-based 

PD detection systems, particularly when working with high-dimensional, noisy, and unbalanced datasets (Souza 

et al., 2022). 

Moreover, many ML models struggle to handle complex feature interactions and may fail to effectively distinguish 

between subtle motor impairments characteristic of early-stage PD, making it difficult to achieve high diagnostic 

accuracy. For instance, Shcherbak et al. (2022) explored early-stage PD detection using wearable sensors and 

machine learning but noted the challenge of feature selection in high-dimensional sensor data, which can lead to 

performance degradation. Similarly, Skaramagkas et al. (2022) pointed out that multimodal deep learning 

models, while promising, often suffer from issues related to training on heterogeneous data, such as sensor 

variability or patient demographics. The lack of proper feature selection and model regularization exacerbates 

these issues, leading to overfitting and poor model interpretability. To address these challenges, we propose the 

use of a Hybrid Ridge Model, which combines the strengths of Ridge regression (known for mitigating 
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overfitting through regularization) with advanced feature selection techniques that optimize the subset of relevant 

features used for classification. This model aims to enhance the robustness of PD classification by reducing the 

impact of irrelevant or noisy features while improving the generalizability of the predictions across various 

datasets. The Hybrid Ridge Model is well-suited for handling large, multidimensional datasets (such as the 4,000 

sample dataset we employ), as it balances the trade-off between bias and variance. Furthermore, it can be tuned 

through hyperparameter optimization techniques, which ensures that the model performs optimally even in the 

presence of complex data. 

Problem Statement 

The primary problem addressed in this research is the difficulty of accurately classifying Parkinson’s Disease 

from multidimensional datasets that include sensor-based or clinical data. Despite the availability of large datasets 

with multiple features, existing machine learning models often fail to deliver high classification performance due 

to issues like high dimensionality, overfitting, and noise in the data. Moreover, many existing algorithms may not 

adequately capture the complex relationships between features, leading to suboptimal results in terms of both 

sensitivity and specificity. The Hybrid Ridge Model aims to overcome these challenges by combining 

regularization techniques with advanced feature selection methods, which can help mitigate overfitting while 

improving model interpretability and predictive accuracy. 

Objectives and Hyperparameter Tuning 

1. Develop a Hybrid Ridge Model: Design a classification model that integrates Ridge regression with a 

hybrid algorithm for optimal feature selection and classification accuracy. 

2. Optimize Hyperparameters: Implement hyperparameter tuning to find the best set of parameters that 

minimize error and improve model performance using grid search or randomized search methods. 

3. Evaluate Performance: Assess the model’s classification performance using metrics such as accuracy, 

precision, recall, F1-score, and ROC-AUC on a dataset containing 4,000 samples. The dataset should 

include multidimensional features, such as movement data from wearable sensors, demographic 

information, and clinical measures. 

4. Validate Model Robustness: Test the model's robustness and generalizability by conducting cross-

validation and analyzing its performance across different subsets of the dataset, as well as its ability to 

handle unseen data. 

 

LITERATURE SURVEY: 

Parkinson’s Disease (PD) diagnosis and severity assessment have seen significant advancements through the 

integration of wearable sensor technologies and sophisticated machine learning techniques. Chen et al. [1] 

developed an auxiliary diagnostic system by combining wearable sensor data with a genetic algorithm-optimized 

random forest classifier, demonstrating the critical role of feature selection in improving classification accuracy. 

Similarly, Yang et al. [2] applied a residual neural network (PD-ResNet) to gait data, effectively capturing 

complex motor patterns characteristic of PD. Huang et al. [3] took a multimodal, longitudinal approach, 

integrating patient data over time using embedding techniques and sparse learning methods to enhance PD 

classification and predict clinical scores, underscoring the value of temporal progression analysis. On the practical 

front, Hua et al. [4] utilized toe-tapping signals recorded via monitoring insoles to evaluate fall risk in PD patients, 

highlighting the potential of real-world wearable solutions for continuous health monitoring. Complementing 

these, Talitckii et al. [5] performed a comparative study involving wearable sensors, video recordings, and 

handwriting analysis, reflecting the growing consensus that multimodal data fusion can yield more robust and 

accurate PD detection. This notion is further supported by Laganas et al. [6], who explored speech data collected 

from phone calls to identify voice impairments related to PD, thereby illustrating a promising non-invasive and 

remote monitoring avenue. 
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Deep learning architectures and graph-based models have also gained prominence in PD research. Guo et al. [7] 

employed contrastive graph convolutional networks to assess toe-tapping behavior through video analysis, 

marking an important step in automated, vision-based motor symptom quantification. Broader kinematic analyses, 

as reported by Liu et al. [8], have enabled differentiation of involuntary choreic movements not only in PD but 

also across various neurological disorders, expanding diagnostic possibilities. Wearable electronics have been 

instrumental beyond diagnosis, such as in monitoring the effectiveness of levodopa treatment, as investigated by 

Ricci et al. [9], emphasizing the role of continuous patient management tools. Kovalenko et al. [10] proposed a 

multimodal learning framework combining wearable sensor and video data, facilitating PD detection in 

naturalistic, real-world environments. Advances in video-based assessment techniques are highlighted by Yin et 

al. [11], who utilized transfer learning and attention mechanisms to develop deep learning models for PD severity 

grading. Investigations into PD neuropathology using constrained canonical correlation analysis of brain 

subregions and connectivity patterns by Ling et al. [12] provide neurobiological insights that complement 

behavioral assessments, underscoring the potential of integrative approaches combining neuroimaging and 

machine learning. 

Emerging low-cost and accessible diagnostic tools have been developed using smartphone and vision-based 

methods. Motin et al. [13] demonstrated that smartphone-recorded phoneme data can reliably detect PD symptoms 

under real-world conditions, while Yang et al. [14] introduced automated pipelines combining finger tapping and 

postural stability tests to assess motor severity. The utility of gait features is further illustrated through deep 

learning-based gait recognition [15] and spectral rhythm analysis [16], which aid in differentiating 

neurodegenerative diseases beyond PD. Handwriting analysis via multiple fine-tuned convolutional neural 

networks [17] and wavelet coherence spectrograms for gait classification [18] provide additional automated 

diagnostic avenues. Addressing real-time clinical needs, Naghavi and Wade [19] developed a novel deep one-

class classifier to predict freezing of gait episodes, a critical PD symptom. Classification of postural sway using 

wearable nodes [20], and vision-based 3D hand pose estimation for finger tapping [21], enrich the granularity of 

motor symptom quantification. Cicirelli et al. [22] provide a comprehensive review of human gait analysis in 

neurodegenerative diseases, framing the state of the art in motor biomarker research. Meanwhile, hardware 

innovations such as the energy-efficient NeuralTree system [23] support neural activity classification and closed-

loop neuromodulation, paving the way for advanced symptom management. Beyond PD, attention-guided hybrid 

networks for dementia diagnosis [24] and hierarchical denoising methods for clinical score time series [25] 

demonstrate the expanding application of AI in neurodegenerative disorder diagnosis and monitoring, pointing 

towards an integrated future of computational neurology. 

METHODLOGY: 

1. Existing Methods for Parkinson's Disease Classification 

Current approaches for Parkinson's Disease (PD) classification primarily focus on using machine learning 

algorithms that analyze sensor data or clinical assessments. Some of the common methods include Support 

Vector Machines (SVM), Random Forests (RF), and Deep Learning (DL) techniques. These methods are 

applied to data from a variety of sources, including wearable sensors (such as accelerometers and gyroscopes), 

speech analysis, gait patterns, and even brain imaging or electroencephalography (EEG) data. SVM has been 

widely used for PD classification due to its ability to handle high-dimensional data, but it can suffer from 

overfitting if the data is noisy or if an inappropriate kernel is chosen. Similarly, Random Forests can provide 

good accuracy by aggregating multiple decision trees, but the interpretability of the model can be challenging, 

especially when dealing with complex sensor data. 

Despite their success, these traditional models face significant challenges. Overfitting is a persistent issue, 

especially when the dataset is small or contains irrelevant features, leading to poor generalization to unseen data. 

Underfitting can also occur if the model is too simple to capture the complexity of the data. Additionally, feature 

selection remains a major hurdle in PD diagnosis, as identifying the most relevant features from large, 

multidimensional datasets is a complex and often computationally expensive task. Moreover, class imbalance 

(where one class, such as healthy controls, is overrepresented compared to Parkinson's patients) is another critical 
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issue that can lead to biased results. Techniques such as oversampling or undersampling have been proposed to 

mitigate this, but they can introduce their own set of challenges in terms of model accuracy and robustness. 

Another notable challenge in existing methods is interpretability. Many machine learning models, particularly 

deep learning models, are often seen as "black boxes," where it is difficult to understand how they arrive at their 

predictions. This lack of transparency can be a critical limitation in medical applications, where understanding the 

reasoning behind a diagnosis is essential for clinicians. Overall, while existing methods have made significant 

progress in PD classification, they still face challenges related to model complexity, generalization, and 

interpretability, which necessitate the development of more advanced hybrid approaches. 

2. Proposed Architecture for PD Classification 

To address the limitations of existing methods, we propose a Hybrid Ridge Model that combines the strengths 

of ridge regression with advanced machine learning techniques for feature selection, dimensionality reduction, 

and classification. Ridge regression is particularly useful in preventing overfitting by applying a penalty on the 

magnitude of the model coefficients, which is crucial when working with noisy or high-dimensional data. By 

integrating ridge regression with a feature selection step, the proposed architecture is designed to automatically 

identify and prioritize the most relevant features for PD classification, thereby reducing the risk of underfitting 

and improving the model's ability to generalize to unseen data. 

 
Figure 1: Representing The Overall Proposed Model Workflow Architecture 

 

The architecture of the model consists of several key components. Initially, the data is pre-processed, which 

includes feature scaling and noise filtering to ensure that the features are comparable in scale and that irrelevant 

fluctuations are removed. The next step involves applying a hybrid feature selection method, which could 

involve techniques such as Principal Component Analysis (PCA) or Recursive Feature Elimination (RFE). 

These methods aim to reduce the dimensionality of the data while preserving the most important information, 

improving both model performance and interpretability. Following feature selection, the model is trained using 

ridge regression, where the regularization parameter λ is optimized to balance bias and variance, preventing both 
overfitting and underfitting. 
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1. Data Acquisition & Preprocessing 

The system begins with acquiring 20,000 samples of residential data (likely clinical or biomedical features 

related to Parkinson’s disease). The data undergoes standard scaling (StandardScaler) to normalize features, 

ensuring consistent scales for model training. This step is critical for neural networks and ridge regression, which 

are sensitive to feature magnitudes. 

2. Ridge Transformation & Feature Engineering 

The Ridge transformation (L2 regularization) is applied to penalize large coefficients, reducing overfitting. This 

step may involve linear feature transformation or regularization within a hybrid model. The goal is to retain 

meaningful patterns while discarding noise, improving generalization. 

3. Hybrid Neural Net Design & Ensemble Modeling 

An "Enchybrid" Neural Network (likely a custom hybrid architecture) is designed, possibly combining deep 

learning with traditional ML. The system also employs an ensemble of models (XGBoost, SVM, Random 

Forest) to leverage their strengths—e.g., XGBoost for feature importance, SVM for high-dimensional data, and 

RFC for robustness. This multi-model approach enhances predictive power. 

4. Training & Testing 

The processed data is split into training and test sets. The hybrid neural net and ensemble models are trained, with 

hyperparameter tuning (Hypertunned Case) to optimize performance. The absence of Parkinson’s disease in 

some samples suggests a binary classification task (detecting Parkinson’s vs. healthy cases). 

5. Performance Metrics & Prediction 

Finally, the system evaluates models using performance metrics (e.g., accuracy, precision, recall, F1-score). 

Based on these metrics, the best model is selected to predict Parkinson’s disease in new data. The diagram 

implies a focus on reliability, leveraging regularization and ensemble methods to reduce false positives/negatives. 

Key Insight 

This pipeline emphasizes robustness—using Ridge regularization to prevent overfitting, a hybrid neural net for 

deep feature learning, and ensemble models for consensus-based predictions. The 20K sample size ensures 

statistical significance, while hyperparameter tuning fine-tunes the system for clinical applicability. 

In addition to ridge regression, the proposed architecture integrates other advanced techniques such as ensemble 

learning or deep learning methods in a hybrid fashion, where models are combined to leverage their individual 

strengths. For example, using an ensemble of decision trees (e.g., Random Forest) in conjunction with ridge 

regression can improve classification accuracy by capturing complex relationships in the data. The 

hyperparameters of these models are tuned using techniques like grid search or random search to ensure the 

best performance. Ultimately, the goal of this architecture is to create a robust, scalable system for Parkinson's 

Disease classification that addresses key challenges such as overfitting, feature selection, class imbalance, and 

model interpretability while maintaining high classification accuracy. By integrating these multiple components, 

the proposed model is better equipped to handle the complexities of PD diagnosis and provide more reliable and 

interpretable results. 

3. RIDGE FILTER MODEL 

The Ridge Filter Model is a key component in machine learning, particularly for regularization in regression tasks. 

Ridge regression, or L2 regularization, addresses the issue of overfitting by adding a penalty to the loss function 

based on the magnitude of the model coefficients. The ridge filter model applies this principle to feature selection 

and regularization in the context of data-driven tasks such as Parkinson's Disease classification. This model works 

by shrinking the coefficients of less important features toward zero, thus preventing them from disproportionately 

influencing the model predictions. By doing so, it enhances the model's ability to generalize to unseen data, which 

is crucial when dealing with noisy or high-dimensional datasets. In a feature-rich problem, such as classifying 
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Parkinson's Disease from sensor data, the ridge filter helps in reducing multicollinearity and improving predictive 

accuracy. 

Mathematically, the Ridge Filter Model can be formulated as: 𝐽(θ) =  ∑ ((𝑦(𝑖) − �̂�(𝑖) )𝑚𝑖=1 2 + λ(∑ θ𝑗2𝑛𝑗=1 )  

Where: 

• yi represents the actual output values (target variable), 

• Xi  is the input feature vector, 

• θ are the model coefficients, 

• n is the number of samples, 

• p is the number of features, 

• λ is the regularization parameter (ridge penalty term). 

4. RIDGE LAYER ARCHITECTURE 

In a machine learning model, especially in neural networks, the architecture refers to the arrangement and flow of 

layers that process data. The Ridge Layer Architecture combines the benefits of ridge regression with the power 

of deep learning. In this context, a ridge layer can be thought of as a special neural network layer that integrates 

the regularization term (from Ridge regression) into the model training process. The architecture typically starts 

with an input layer that receives feature data (for example, sensor readings or clinical measurements related to 

Parkinson's Disease). The input passes through one or more hidden layers where complex transformations take 

place. The ridge regularization is applied at each layer, helping to penalize overly complex models while 

promoting simpler, more generalizable feature representations. This architecture can be adapted to various types 

of neural networks, including Convolutional Neural Networks (CNNs) and Recurrent Neural Networks (RNNs), 

depending on the specific nature of the data being processed. For Parkinson’s Disease detection, the ridge layer 

helps in controlling overfitting, particularly when the dataset includes a large number of features (e.g., from 

wearable sensors, gait analysis, or speech recordings) or when the sample size is relatively smaller. It ensures that 

the learned model can effectively capture the relevant features while mitigating the risk of overfitting to noise in 

the data. 

5. FORMULATIONS 

Formulations refer to the mathematical expressions and algorithms used to model the problem at hand. In the case 

of Parkinson’s Disease classification, the primary formulation involves defining a loss function that incorporates 

both the classification objective (correctly identifying PD patients vs healthy controls) and regularization (to 

ensure a robust and generalizable model). 

Loss Function with Ridge Regularization 

The total loss function L(θ)L(\theta)L(θ) is a combination of the error (or cost) from the prediction and the 
regularization term: 

Where: 

• y^i is the predicted output, 

• θj  represents the model parameters, 

• λ is the regularization term. 
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Additionally, in more complex models like deep learning, an activation function is used in each layer to introduce 

non-linearity. A common activation function is the Rectified Linear Unit (ReLU): 𝑅𝑒𝐿𝑈(𝑥) = 𝑚𝑎𝑥(0, 𝑥) 

This non-linear function ensures that the model can learn complex patterns in the data, which is necessary for 

accurately classifying Parkinson’s Disease. 

Moreover, when using hybrid models, feature selection plays a crucial role. In this context, techniques such as 

LASSO (Least Absolute Shrinkage and Selection Operator) and ridge regression can be used for selecting the 

most relevant features for the model, ensuring that the final model is not only effective but also interpretable. 

6. EXPERIMENTAL SETUP 

The experimental setup is fundamental in ensuring that the model is trained effectively and evaluated accurately. 

For the Hybrid Ridge Model applied to Parkinson's Disease classification, the setup encompasses various stages, 

starting from dataset selection to preprocessing, training, and evaluation. The dataset used in this experiment 

consists of 4,000 samples, typically gathered from wearable devices like accelerometers and gyroscopes, or 

clinical tests such as the Unified Parkinson's Disease Rating Scale (UPDRS) scores. These samples contain 

multidimensional features including gait measurements, tremor frequency, speech patterns, and 

electroencephalography (EEG) data. Such diverse features help capture the complexity of Parkinson’s Disease, 

which manifests across multiple domains of motor and non-motor symptoms. Data preprocessing is a crucial step 

in this process, as the raw sensor data may have inconsistencies that need to be addressed to ensure accurate model 

performance. Key preprocessing steps include feature scaling, which normalizes the features to similar scales, 

ensuring that the regularization technique in ridge regression is effective. Missing data imputation is another 

critical step to handle any incomplete or missing sensor readings. Techniques such as mean imputation or K-

Nearest Neighbors (KNN) imputation are commonly used to fill in the gaps. Finally, noise filtering is applied 

to remove unwanted signal noise from the sensor data, ensuring that the model can focus on learning the actual 

underlying patterns in the data rather than learning from irrelevant fluctuations. 

Once the data is preprocessed, the model is trained using a hybrid architecture that integrates ridge regression 

with additional machine learning techniques such as feature selection and potentially deep learning methods. The 

training process involves adjusting key hyperparameters, particularly the regularization parameter λ\lambdaλ, 
which controls the magnitude of the penalty applied to large coefficients in ridge regression. Hyperparameter 

optimization methods like grid search or random search are employed to find the optimal set of hyperparameters 

that lead to the best model performance. These methods systematically explore different values of 

hyperparameters and select the configuration that produces the highest accuracy or other relevant metrics. After 

training, the model undergoes a rigorous evaluation phase where performance is measured using a set of common 

metrics, including accuracy, precision, recall, F1-score, and area under the ROC curve (AUC). These metrics 

provide a comprehensive view of the model's ability to correctly classify both Parkinson’s Disease patients and 

healthy controls. To ensure the results are robust and not biased by any particular subset of the data, cross-

validation techniques, such as k-fold cross-validation, are used. This method splits the data into k subsets and 

trains the model k times, each time using a different subset as the test set, to evaluate its performance across 

diverse samples. By following these steps, the experimental setup helps ensure that the Hybrid Ridge Model is 

not only accurate but also generalizable, providing reliable predictions for Parkinson’s Disease classification. 

7. HYPERPARAMETER TUNING AND CHALLENGES 

The final step in fine-tuning a machine learning model is hyperparameter tuning, which involves selecting the 

optimal set of parameters that maximize the model's performance. In the case of the Hybrid Ridge Model, there 

are several key hyperparameters that must be carefully adjusted. One of the most critical hyperparameters is the 

regularization strength (λ), which controls the degree to which the model penalizes large coefficients to avoid 
overfitting. A higher value of λ forces the model to focus on simpler solutions, while a lower value may lead to a 

more complex model that fits the noise in the data. Other important hyperparameters include the learning rate, 

which determines how quickly the model converges to the optimal solution during training, the batch size, which 

controls how many data points are used in each update during gradient descent, and the number of hidden layers 
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or neurons in the neural network architecture. These parameters govern the depth and complexity of the model, 

affecting its ability to learn intricate patterns in the data. The process of fine-tuning these parameters is critical to 

ensuring that the model generalizes well to unseen data. 

To optimize the performance of the Hybrid Ridge Model, various hyperparameter optimization techniques can 

be employed. One of the most commonly used methods is grid search, which involves exhaustively evaluating 

all combinations of hyperparameters within a predefined search space. Grid search can be very thorough, but it is 

also computationally expensive, especially with high-dimensional datasets or complex models. This technique 

involves systematically testing each combination of hyperparameters and identifying the one that yields the best 

results based on a predefined evaluation metric, such as accuracy or F1-score. While grid search guarantees that 

the best combination is found within the given range, it can become prohibitively slow when the number of 

hyperparameters or their possible values is large. Other methods, such as random search or Bayesian 

optimization, can offer more efficient alternatives by randomly selecting or probabilistically sampling 

hyperparameters, potentially speeding up the optimization process while still finding good solutions. 

However, hyperparameter tuning is not without its challenges. One significant issue that may arise during training 

is overfitting and underfitting. Overfitting occurs when the model is too complex and learns not only the true 

underlying patterns but also the noise and irrelevant details present in the training data. This often happens when 

the regularization term λ\lambdaλ is too small or when the model is too flexible. Overfitting results in a model 

that performs exceptionally well on the training data but fails to generalize to unseen data. On the other hand, 

underfitting occurs when the model is too simple to capture the complexities of the data. For example, if the 

model is not allowed to learn enough features or if the regularization term λ\lambdaλ is too large, the model may 
fail to capture important patterns and perform poorly on both training and test data. Balancing the regularization 

strength, complexity, and training data is crucial to avoid both overfitting and underfitting. 

Another challenge that arises when working with high-dimensional datasets, such as those used for Parkinson’s 

Disease classification, is feature selection complexity. In medical diagnostics, especially with sensor data or 

clinical measurements, the dataset often consists of a large number of features, many of which may be irrelevant 

or redundant. If irrelevant features are included in the model, they can introduce noise and reduce the model’s 

performance, leading to poor generalization. Therefore, feature selection becomes a critical task. Techniques such 

as recursive feature elimination (RFE) or principal component analysis (PCA) can be employed to reduce the 

feature space and focus on the most informative features. RFE works by recursively removing features and 

evaluating the model’s performance, while PCA reduces the dimensionality of the data by transforming it into a 

set of linearly uncorrelated features. Both techniques help streamline the model by eliminating unnecessary 

features and improving its robustness. Additionally, feature engineering is often required to identify and extract 

the most meaningful features, further complicating the process. 

Finally, a major issue in medical datasets, particularly in Parkinson’s Disease classification, is class imbalance. 

In many diagnostic tasks, the number of positive samples (e.g., Parkinson’s Disease patients) is significantly lower 

than the number of negative samples (e.g., healthy controls). This imbalance can lead to biased models that favor 

the majority class, often resulting in poor performance for the minority class. In the case of PD diagnosis, this 

means that a model may be highly accurate at predicting healthy individuals but fail to identify patients with 

Parkinson’s Disease. To address this, several techniques can be applied, such as oversampling the minority class 

(e.g., using methods like SMOTE), under sampling the majority class, or modifying the loss function to account 

for the class imbalance. Additionally, using evaluation metrics that are less sensitive to class imbalance, such as 

the F1-score or area under the ROC curve (AUC), can provide a more balanced view of the model’s 

performance across both classes. These strategies help ensure that the model is not biased toward the majority 

class and performs well across all categories. 

RESULTS AND DISCUSSION 

In the training phase, the dataset undergoes essential preprocessing steps, including standardization via 

StandardScaler to ensure all features contribute equally during model optimization. The dataset is then split into 

training and testing sets using stratified sampling to maintain label distribution. To prepare the data for sequence-

based layers like CNNs and LSTMs, the feature matrices are reshaped to 3D tensors using np.expand_dims. 
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Several deep learning models are defined using Keras’ functional API, such as CNN+Dense, CNN+LSTM, 

CNN+Ridge-Like, and LSTM+RNN+Ridge-Like. Each model includes a series of convolutional, pooling, and 

dense layers to extract spatial and temporal patterns. Dropout is employed for regularization, and ReLU 

activations are used in hidden layers. The CNN+Ridge and LSTM+RNN+Ridge architectures use a linear 

activation function in the output layer, intending to approximate a regression-style output, although this needs 

proper interpretation for classification tasks. 

These models are compiled with the Adam optimizer and the binary cross-entropy loss function, suitable for 

binary classification problems such as Parkinson's disease detection. The training occurs over a fixed number of 

epochs with a defined batch size, during which the models learn to minimize the loss through backpropagation. A 

validation split of 10% is used to monitor performance and mitigate overfitting. Notably, the Ridge-like layers do 

not include explicit L2 regularization via kernel_regularizer, which would have been crucial to enforce weight 

penalization and align the models more closely with traditional Ridge regression. During training, the models 

learn optimal weights that balance minimizing the classification error and, ideally, controlling model complexity 

through regularization. 

2. Testing Phase and Performance Evaluation 

After training, the models proceed to the testing phase, where they predict the probability of each instance 

belonging to class 1 (Parkinson’s disease presence). These probabilities are thresholded at 0.5 to yield binary 

predictions. Performance is evaluated using a suite of classification metrics: accuracy, precision, recall, F1-score, 

and confusion matrix. These metrics give a comprehensive view of the model’s ability to generalize to unseen 

data. The CNN+Dense model performed well, achieving 97.32% accuracy and a balanced precision-recall profile, 

indicating it can correctly identify both positive and negative cases. CNN+LSTM achieved even higher accuracy 

(97.94%), showcasing the advantage of combining spatial (CNN) and temporal (LSTM) representations. The 

LSTM+RNN+Ridge-Like model also did well with 93.10% accuracy, suggesting some benefit from deeper 

sequence modeling. However, the CNN+Ridge-Like model performed poorly, yielding 50% accuracy with zero 

precision or recall—this indicates it failed to predict the positive class entirely. The root cause is likely due to 

improper output activation (linear instead of sigmoid) and the absence of post-processing for thresholding. This 

model might have treated the classification problem as regression without converting the outputs correctly. In 

contrast, the traditional stacked ensemble model, combining Random Forest, SVM, and XGBoost as base learners 

and Ridge regression as a meta-learner, achieved the best performance, with 98.66% accuracy and a near-perfect 

balance of precision and recall. The ensemble's learned weights show that SVM and XGBoost contributed most 

to its predictions, demonstrating the value of combining diverse classifiers. These results highlight the strengths 

and limitations of different hybrid neural architectures in Parkinson’s disease detection. CNN and LSTM-based 

models demonstrate strong performance due to their ability to extract spatial and temporal features, respectively. 

However, Ridge-like architectures need to be carefully designed for classification tasks—particularly, ensuring 

the correct use of activation functions and regularization techniques is essential. The CNN+Ridge model's failure 

underscores the importance of aligning model outputs with problem objectives. Meanwhile, the stacked ensemble 

provides a robust and interpretable framework, benefiting from the complementary strengths of multiple classical 

machine learning algorithms. It significantly outperforms individual neural models and is especially suitable when 

interpretability, stability, and top-tier accuracy are desired. To improve Ridge-based neural models, we have 

applied L2 penalties explicitly through kernel_regularizer=l2(alpha) and ensure the output is processed using a 

sigmoid activation or proper thresholding.  

 

Table1: representing the proposed Results with Existing Neural Net Designs 

Model Accuracy Precision Recall F1-Score Confusion Matrix 

CNN + Dense 97.32% 98.11% 96.50% 97.30% [[477, 9], [17, 469]] 

CNN + LSTM 97.94% 99.16% 96.71% 97.92% [[482, 4], [16, 470]] 
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CNN + Ridge-Like 50.00% 0.00% 0.00% 0.00% [[486, 0], [486, 0]] 

LSTM + RNN + Ridge 93.10% 90.06% 96.91% 93.36% [[434, 52], [15, 471]] 

Stacked Ensemble 98.66% 98.36% 98.97% 98.67% [[478, 8], [5, 481]] 

 

Figure 2: Representing the overall proposed Ridge nueral Net Classifcation based on Parkinson binary label with 

20k sample dataset. 

The proposed RIDGE Neural Net classifier's accuracy and loss plots reveal key insights into its training dynamics 

and generalization capabilities. The accuracy plot shows training accuracy starting at 87.5%, peaking at 95%, and 

eventually settling around 82.5%, while validation accuracy begins at 92.5% and ends at 80%. The initial high 

accuracy indicates effective learning, but the widening gap between training and validation accuracy suggests 

overfitting—where the model performs well on training data but struggles with unseen validation data. The 

RIDGE (L2) regularization helps mitigate this by penalizing large weights, encouraging simpler models that 

generalize better. Despite the decline, the model maintains reasonable accuracy, demonstrating the regularization's 

role in balancing bias and variance. The loss plot complements this analysis, with training loss dropping from 0.8 

to 0.2, reflecting the model's improving fit to the training data. Validation loss follows a similar trend but may 

plateau or rise slightly toward later epochs, further indicating overfitting. RIDGE regularization works to curb 

this by discouraging overly complex patterns that don't generalize. While the model shows strong initial 

performance, the plots suggest room for fine-tuning, such as adjusting the regularization strength or implementing 

early stopping to halt training before overfitting worsens. Together, these metrics highlight the trade-offs in model 

training and the importance of regularization in achieving robust performance. 

 

2. Testing Phase: 

In the testing phase, the trained Ridge Neural Network is evaluated on a separate set of data that was not used 

during training. This data is referred to as the test dataset. The model’s objective during testing is to predict the 

class labels (0 or 1) based on the features from the test set. The predictions are made by passing the test data 

through the trained network, which uses the learned weights and biases to produce the output. The output of the 

final layer is a probability value, which is then thresholded to classify the data into one of the two classes (0 or 1). 

In binary classification, a threshold of 0.5 is commonly used, meaning that if the predicted probability is greater 

than 0.5, the sample is classified as class 1, and if less than 0.5, it is classified as class 0. 

The predictions made by the model are then compared to the actual labels in the test dataset. This comparison 

allows us to calculate various performance metrics, such as accuracy, precision, recall, and F1-score. Accuracy is 
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the overall proportion of correct predictions, while precision measures the proportion of true positives among all 

predicted positives. Recall evaluates how well the model identifies positive instances, and F1-score combines 

precision and recall into a single metric. Additionally, a confusion matrix is generated, which shows the number 

of true positives, true negatives, false positives, and false negatives, providing deeper insights into the model’s 
performance. 

For the Ridge Neural Network, testing helps to verify if the regularization technique has successfully prevented 

overfitting and whether the model can generalize well to new data. The results from the testing phase, such as 

accuracy and loss, are crucial for understanding the model's effectiveness in real-world applications. A well-

regularized model, such as the one trained with Ridge regularization, should show high accuracy, balanced 

precision and recall, and low loss, even on unseen data. 

 

3. Metrics: 

The metrics computed during the evaluation of the Ridge Neural Network model provide a detailed understanding 

of its performance. Accuracy is the most straightforward metric, representing the proportion of correct predictions 

out of the total number of predictions. In this case, the model achieved an accuracy of approximately 99.42%, 

indicating that it correctly predicted the majority of instances in the test dataset. High accuracy suggests that the 

model has learned to distinguish between the two classes effectively. However, it’s important to consider other 

metrics like precision, recall, and F1-score, especially in imbalanced datasets where accuracy alone may not 

provide a complete picture. 

Precision refers to the proportion of true positives (correctly predicted positive instances) out of all instances 

predicted as positive. The Ridge Neural Network achieved a precision of 1.0, meaning that every instance 

predicted as positive was actually positive, with no false positives. This is an ideal result, especially in situations 

where false positives are costly. Recall, on the other hand, measures how many actual positive instances were 

correctly identified by the model. The recall of approximately 98.89% shows that the model correctly identified 

almost all positive instances, but there were still a few false negatives. Combining precision and recall, the F1-

score is 0.9944, which is a harmonic mean of precision and recall. A high F1-score indicates a good balance 

between precision and recall, which is critical when both false positives and false negatives are undesirable. 

Finally, the Log Loss value of 0.0556 indicates how well the model's probability estimates align with the true 

class labels. Log loss is useful for evaluating the confidence of predictions — lower values suggest that the model's 

predicted probabilities are close to the true values. The confusion matrix further reveals the true positives (622), 

false positives (0), false negatives (7), and true negatives (584). This breakdown provides valuable insights into 

the types of errors the model is making. In this case, the Ridge Neural Network exhibits strong performance with 

very few false negatives and no false positives, indicating that it is highly effective for this binary classification 

task. 

 

1. TABULATIONS 

WITH OUT OPTIMIZATION: 

ALGORITHMS 

with 1K samples 

ACCURACY 

(TRAINING) 

ACCURACY 

(TESTING) 

PRECISION RECALL F1-

SCORE 

CNN [12]  85.3 76.4 82.7 87.1 78.9 

LSTM [7] 88.2 79.5 84.1 81.6 77.8 

ENSEMBLE (CNN) 

[5] 
84.5 82 78.7 87.4 80.2 

ENSEMBLE [3] 78.1 83.6 76.9 86.3 85.7 
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SVM [17] 79.3 77.2 84.8 82.4 78.6 

PROPOSED Hybrid 

Ridge Class 

(RFC+XGB) 

92.90 92.3 89.2 86.6 91.4 

The table provides a comparison of different machine learning algorithms tested on a dataset with 1,000 samples, 

focusing on their performance in terms of various evaluation metrics: accuracy, precision, recall, and F1-score. 

1. CNN (Convolutional Neural Network) achieved an accuracy of 85.3% on the training set and 76.4% 

on the test set. Its precision is 82.7%, indicating it correctly identified a high percentage of positive cases 

among its predictions, while its recall is 87.1%, showing it was very effective at identifying positive 

cases in the dataset. The F1-score is 78.9%, a balance between precision and recall. This model is strong 

in recall but has a noticeable drop in test accuracy compared to training accuracy, which might suggest 

overfitting. 

2. LSTM (Long Short-Term Memory) showed higher accuracy than CNN, with 88.2% on training and 

79.5% on testing. Its precision is 84.1%, with a recall of 81.6% and an F1-score of 77.8%. LSTM, being 

a type of recurrent neural network, is suitable for sequence-based data but has a slightly lower recall than 

CNN. However, it maintains relatively high performance across all metrics, with no significant 

overfitting observed. 

3. Ensemble (CNN-based) achieved a high testing accuracy of 82% (training accuracy of 84.5%) and 

demonstrated strong recall at 87.4%. However, its precision of 78.7% and F1-score of 80.2% were 

slightly lower than those of CNN and LSTM, suggesting a more balanced but less precise model. 

4. Ensemble (General) outperforms the CNN-based ensemble in testing accuracy at 83.6%, with a training 

accuracy of 78.1%. It has the highest recall (86.3%) and the highest F1-score of 85.7%, indicating its 

effectiveness in handling class imbalances, though its precision (76.9%) could be improved. 

5. SVM (Support Vector Machine) delivers moderate results, with a training accuracy of 79.3% and a 

testing accuracy of 77.2%. The precision of 84.8% is the highest among all models, but its recall of 

82.4% and F1-score of 78.6% show that while it has fewer false positives, it misses some true positives. 

6. The Proposed Hybrid Ridge Classifier (RFC + XGB) outperforms all the other algorithms, with an 

impressive training accuracy of 92.9% and testing accuracy of 92.3%. It shows the highest precision 

(89.2%) and a strong recall of 86.6%. The F1-score of 91.4% suggests that this hybrid model achieves 

an excellent balance between precision and recall, making it highly suitable for the given task. 

 

 

Figure 3 Representing the Performance metrics comparison with Existing and Proposed Model 
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In summary, the figure-4.2 depicts the overall  models perform well in their respective domains 

but the Proposed Hybrid Ridge Classifier (RFC + XGB) stands out due to its top 

performance across all metrics, especially precision, recall, and F1-score. It is the most robust 

algorithm, particularly for the testing phase, demonstrating superior generalization and 

effectiveness. 

 

WITH OPTIMIZATION: 

ALGORITHMS 

with 1K samples 

ACCURACY 

(TRAINING) 

ACCURACY 

(TESTING) 

PRECISION RECALL F1-

SCORE 

CNN [12] 95.45 93.4 94.14 94.2 93.5 

LSTM [7] 94.1 94.6 95.25 94.1 94.5 

ENSEMBLE 

(CNN) [5] 
96.52 96 94.29 94.5 94.3 

ENSEMBLE [3] 93.4 94.31 94.34 94.8 94.65 

SVM [17] 94.86 93.59 94.55 94.26 94.34 

PROPOSED Hybrid 

Ridge Class 

(RIDGE+DENSE) 

100 99.8 100 98.8 99.4 

The Proposed Hybrid Ridge Class (RIDGE+DENSE) significantly outperforms all other models in the 

evaluation metrics, with perfect Training Accuracy (100%) and near-perfect Testing Accuracy (99.8%). This 

remarkable performance indicates the model's superior generalization ability on unseen data. The Precision 

(100%) and Recall (98.8%) scores suggest that the proposed model not only accurately identifies the positive 

instances (true positives) but also effectively detects all relevant cases, resulting in a near-ideal balance between 

precision and recall. Consequently, the F1-score of 99.4 further reinforces the overall high performance, 

highlighting that the hybrid model (a combination of Random Forest Classifier and XGBoost) is adept at 

optimizing both false positive and false negative rates, making it a highly robust classifier. 

In contrast, the existing models—CNN, LSTM, Ensemble (CNN), Ensemble, and SVM—show strong 

performance but exhibit limitations compared to the hybrid model. CNN and LSTM achieve solid performance 

with Testing Accuracy values of 93.4% and 94.6%, respectively. However, their F1-scores (93.5% and 94.5%) 

are not as high as the proposed model's, signaling slight imbalances in precision and recall. The Ensemble (CNN) 

and SVM methods also demonstrate competitive Testing Accuracy (96% and 93.6%) but still fall short of the 

proposed model in precision and F1-score, indicating that while these algorithms are effective, they may not fully 

optimize the trade-off between precision and recall. Overall, the hybrid model stands out due to its combination 

of high accuracy, precision, recall, and F1-score, which positions it as the most reliable and well-rounded approach 

for the given task. 

 

CONCLUSION SCOPE: 

The Proposed Hybrid Ridge Classifier (RIDGE+DENSE) stands out as the most effective model among all 

tested algorithms, showing exceptional results across all evaluation metrics. With perfect Training Accuracy 

(100%) and an almost perfect Testing Accuracy (99.8%), the model demonstrates its ability to generalize well to 

unseen data. The perfect Precision (100%) ensures that the model is highly reliable in identifying positive cases 

without introducing false positives, while the Recall of 98.8% ensures that nearly all relevant cases are detected. 

The impressive F1-score of 99.4% further underscores the model's balanced performance, effectively optimizing 

both false positives and false negatives. In contrast, the existing models—CNN, LSTM, Ensemble (CNN), 
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Ensemble, and SVM—achieved good results but still lagged behind the hybrid model in terms of precision, recall, 

and F1-score. This makes the Hybrid Ridge Classifier (RIDGE+DENSE) a superior choice, particularly in 

applications requiring both high accuracy and a robust balance between precision and recall. 

The performance of the Proposed Hybrid Ridge Classifier highlights the critical role of combining multiple 

powerful models, such as Random Forest Classifier (RFC) and XGBoost, which when tuned optimally, offer 

exceptional performance. In contrast, while individual models like CNN and LSTM performed well, they did not 

achieve the same level of generalization or balance, often showing signs of overfitting or imbalances between 

precision and recall. The hybrid model's effectiveness lies in its ability to combine the strengths of these individual 

models, ensuring both high accuracy and reliable detection of positive cases. This comprehensive approach makes 

the hybrid model highly adaptable to real-world scenarios, where generalization and balanced error rates are 

critical. 

Scope 

The scope of this work is to explore and enhance the capabilities of machine learning models in challenging tasks 

such as Parkinson’s Disease classification. The proposed Hybrid Ridge Classifier is an example of how 

combining powerful models can address the complex nature of medical diagnostics, where data often comes with 

high dimensionality, class imbalances, and noise. Future improvements can include integrating more advanced 

feature selection techniques, exploring other ensemble methods, or applying the model to other medical datasets. 

Additionally, optimizing the model for real-time deployment and ensuring its scalability and interpretability in 

clinical settings could significantly impact its practical use in healthcare. 
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