EXPERIMENTAL STUDY FOR SOFTWARE QUALITY AN PREDICTION WITH MACHINE LEARNING METHODS

A. DURGA DEVI, PENMETSA JAYA NAGA SIRISHA

Assistant Professor MCA DEPT, Dantuluri Narayana Raju college, Bhimavaram, AndhraPradesh Email id:- adurgadevi760@gmail.com

PG Student of MCA, Dantuluri Narayana Raju College, Bhimavaram, AndhraPradesh Email id:- sirisha.penmetsa2769@gmail.com

ABSTRACT

Software quality estimation is an activity needed at various stages of software development. It may be used for planning the project's quality assurance practices and for benchmarking. In earlier previous studies, two methods (Multiple Criteria Linear Programming and Multiple Criteria Quadratic Programming) for estimating the quality of software had been used Also, C5.0, SVM and Neutral network were experimented with for quality estimation. These studies have relatively low accuracies. In this study, we aimed to improve estimation accuracy by using relevant features of a large dataset. We used a feature selection method and correlation matrix for reaching higher accuracies. In addition, we have experimented with recent methods shown to be successful for other prediction tasks. Machine learning algorithms such as Xgboost, Random Forest and Decision Tree are applied to the data to predict the software quality and reveal the relation between the quality and development attributes. The experimental results show that the quality level of software can be well estimated by machine learning algorithms.

1. INTRODUCTION

Software applications may contain defects, originating from requirements analysis, specification and other activities conducted in the software development. Therefore, software quality estimation is an activity needed at various stages

Stages:

- 1.It may be used for planning the project based quality assurance practices and for benchmarking. In addition, the number of defects per unit is considered one of the most important factors that indicate the quality of the software.
- 2. There are two directly comparable studies on software quality prediction using defect quantities in ISBGS dataset. In the first study, the two methods (MCLP and MCQP) were experimented with the dataset and the results were compared
- 3. The quality level was classified according to: number of minor defect + 2*number of major defect + 4*number of extreme defect. The quality of level was to be either high or low. They used k-fold cross-validation technique to measure MCLP and MCQP's performance on the ISBSG database. Release 10 Dataset (released in January 2007) which contained 4,017 records and

106 attributes was used. After preprocessing, 374 records and 11 attributes remained in the dataset. In another study, the same data set was used again.

- 4.The software belonged to high quality class if it fulfills the following requirements: the extreme defects exist or the number of major defects is more than 1 or the number of minor defects is more than 10. The rest are assumed to belong to low quality class. After preprocessing, 746 projects and 53 attributes remained in the dataset. They used C5.0, SVM and Neutral network for classification. As an example to a more application oriented study Rashid et al.
- 5. Used case based reasoning (CBR) for software quality estimation. CBR is a machine learning model which performs the learning process using the results of the previous experiments. Line of code, number of function, difficulty level, and development type and programmers experience are entered and these attributes are used for estimation. The deviation is calculated by using Euclidian distance (ED) or The Manhattan distance (MD). If the error in estimation is less than 10% then the record is saved to the database. Number of inputs that can be obtained from the user is limited. Also, it is necessary to have close values in the database in order to estimating precise values

2. LITERATURE SURVEY AND RELATED WORK

2.1 Software quality metrics in quality assurance to study the impact of external factors related to time:

Software quality assurance is a formal process for evaluating and documenting the quality of the work products during each stage of the software development lifecycle. The practice of applying software metrics to operational factors and to maintain factors is a complex task. Successful software quality assurance is highly dependent on software metrics. It needs linkage the software quality model and software metrics through quality factors in order to offer measure method for software quality assurance. The contributions of this paper build an appropriate method of Software quality metrics application in quality life cycle with software quality assurance. Design: The purpose approach defines some software metrics in the factors and discussed several software quality assurance model and some quality factors measure method. Methodology: This paper solves customer value evaluation problem are: Build a framework of combination of software quality criteria. Describes software metrics. Build Software quality metrics application in quality life cycle with software quality assurance. Results: From the appropriate method of Software quality metrics application in quality life cycle with software quality assurance, each activity in the software life cycle, there is one or more QA quality measure metrics focus on ensuring the quality of the process and the resulting product. Future research is need to extend and improve the methodology to extend metrics that have been validated on one project, using our criteria, valid measures of quality on future software project.

2.2. Software defect prediction: do different classifiers find the same defects:

During the last 10 years, hundreds of different defect prediction models have been published. The performance of the classifiers used in these models is reported to be similar with models rarely performing above the predictive performance ceiling of about 80% recall. We investigate the individual defects that four classifiers predict and analyse the level of prediction uncertainty produced by these classifiers. We perform a sensitivity analysis to compare the performance of Random Forest, Naïve Bayes, R Part and SVM classifiers when predicting defects in NASA, open source and commercial datasets. The defect predictions that

each classifier makes is captured in a confusion matrix and the prediction uncertainty of each classifier is compared. Despite similar predictive performance values for these four classifiers, each detects different sets of defects. Some classifiers are more consistent in predicting defects than others. Our results confirm that a unique subset of defects can be detected by specific classifiers. However, while some classifiers are consistent in the predictions they make, other classifiers vary in their predictions. Given our results, we conclude that classifier ensembles with decision-making strategies not based on majority voting are likely to perform best in defect prediction.

2.3 A Knowledge Discovery Case Study of Software Quality Prediction:

Software becomes more and more important in modern society. However, the quality of software is influenced by many untrustworthy factors. This paper applies MCLP model on ISBSG database to predict the quality of software and reveal the relation between the quality and development attributes. The experimental result shows that the quality level of software can be well predicted by MCLP Model. Besides, several useful conclusions have been drawn from the experimental result.

3. EXISTING SYSTEM

Software applications may contain defects, originating from requirements analysis, specification and other activities conducted in the software development. Therefore, software quality estimation is an activity needed at various stages. It may be used for planning the project based quality assurance practices and for benchmarking. In addition, the number of defects per unit is considered one of the most important factors that indicate the quality of the software.

Disadvantages:

Low accuracy

4. PROPOSED SYSTEM

In this study, we aimed to improve estimation accuracy by using relevant features of a large dataset. We used a feature selection method and correlation matrix for reaching higher accuracies. In addition, we have experimented with recent methods shown to be successful for other prediction tasks. Machine learning algorithms such as Xgboost, Random Forest and Decision Tree are applied to the data to predict the software quality and reveal the relation between the quality and development attributes. The experimental results show that the quality level of software can be well estimated by machine learning algorithms.

Advanatages:

High accuracy than existing methods.

5. METHODOLOGIES

MODULE

Tensorflow:

TensorFlow is a free and open-source software library for dataflow and differentiable programming across a range of tasks. It is a symbolic math library, and is also used for machine learning applications such as neural networks. It is used for both research and production at Google.

TensorFlow was developed by the Google Brain team for internal Google use. It was released under the Apache 2.0 open-source license on November 9, 2015.

Numpy:

Numpy is a general-purpose array-processing package. It provides a high-performance multidimensional array object, and tools for working with these arrays.

It is the fundamental package for scientific computing with Python. It contains various features including these important ones: A powerful N-dimensional array object.

Sophisticated (broadcasting) functions.

Tools for integrating C/C++ and Fortran code.

Useful linear algebra, Fourier transform, and random number capabilities Besides its obvious scientific uses, Numpy can also be used as an efficient multi-dimensional container of generic data. Arbitrary data-types can be defined using Numpy which allows Numpy to seamlessly and speedily integrate with a wide variety of databases.

Pandas:

Pandas is an open-source Python Library providing high-performance data manipulation and analysis tool using its powerful data structures. Python was majorly used for data munging and preparation. It had very little contribution towards data analysis. Pandas solved this problem. Using Pandas, we can accomplish five typical steps in the processing and analysis of data, regardless of the origin of data load, prepare, manipulate, model, and analyze. Python with Pandas is used in a wide range of fields including academic and commercial domains including finance, economics, Statistics, analytics, etc.

Matplotlib:

Matplotlib is a Python 2D plotting library which produces publication quality figures in a variety of hardcopy formats and interactive environments across platforms. Matplotlib can be used in Python scripts, the Python and IPython shells, the Jupyter Notebook, web application servers, and four graphical user interface toolkits. Matplotlib tries to make easy things easy and hard things possible. You can generate plots, histograms, power spectra, bar charts, error charts, scatter plots, etc., with just a few lines of code. For examples, see the sample plots and thumbnail gallery.

For simple plotting the pyplot module provides a MATLAB-like interface, particularly when combined with IPython. For the power user, you have full control of line styles, font properties, axes properties, etc, via an object oriented interface or via a set of functions familiar to MATLAB users.

Scikit - learn:

Scikit-learn provides a range of supervised and unsupervised learning algorithms via a consistent interface in Python. It is licensed under a permissive simplified BSD license and is distributed under many Linux distributions, encouraging academic and commercial use. Python

Python is an interpreted high-level programming language for general-purpose programming. Created by Guido van Rossum and first released in 1991, Python has a design philosophy that emphasizes code readability, notably using significant whitespace.

Python features a dynamic type system and automatic memory management. It supports multiple programming paradigms, including object-oriented, imperative, functional and procedural, and has a large and comprehensive standard library.

Python is Interpreted – Python is processed at runtime by the interpreter. You do not need to compile your program before executing it. This is similar to PERL and PHP.

Python is Interactive – you can actually sit at a Python prompt and interact with the interpreter directly to write your programs.

Python also acknowledges that speed of development is important. Readable and terse code is part of this, and so is access to powerful constructs that avoid tedious repetition of code. Maintainability also ties into this may be an all but useless metric, but it does say something about how much code you have to scan, read and/or understand to troubleshoot problems or tweak behaviors. This speed of development, the ease with which a programmer of other languages can pick up basic Python skills and the huge standard library is key to another area where Python excels. All its tools have been quick to implement, saved a lot of

time, and several of them have later been patched and updated by people with no Python background - without breaking.

6. RESULTS AND DISCUSSION SCREEN SHOTS

SCREENSHOTS

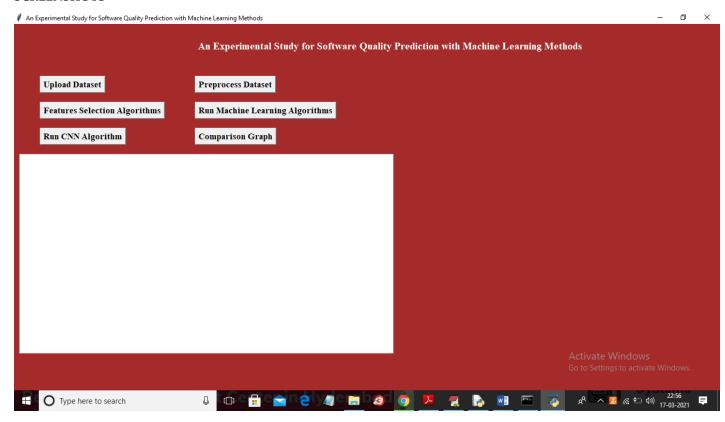


Figure: 1 Home screen.

In above screen click on 'Upload Dataset' button to and upload dataset

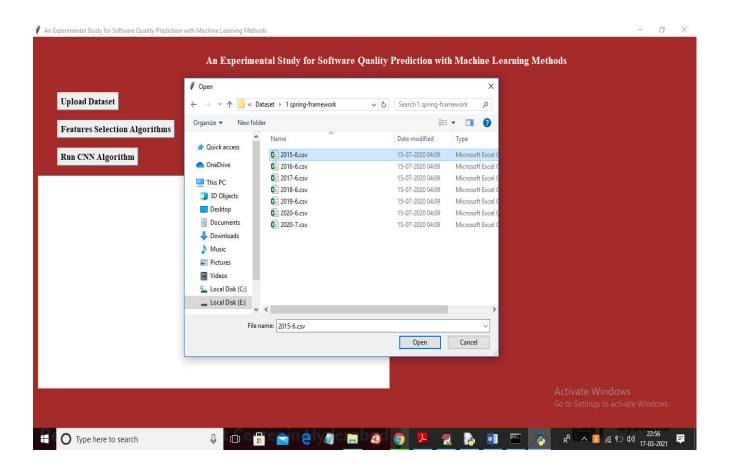


Figure :2 Upload dataset

In above screen selecting and uploading '2015-6.csv' dataset file and then click on 'Open' button to load dataset and to get below screen

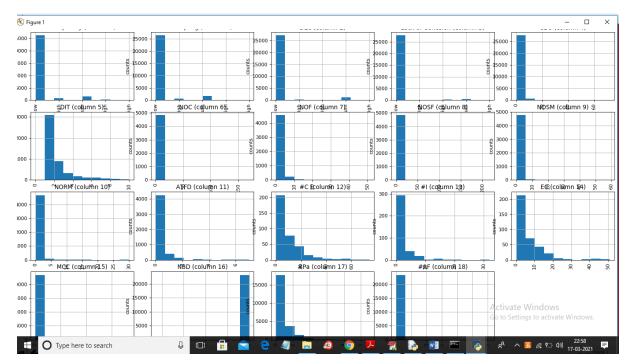


Figure: .3 Graph

In above graph we can see each graph represents one column from dataset and from that columns its counting each distinct value from and plot in that graph for example in second graph NOC columns 3 different values and its plotting 3 different bars with count and no close above graph to get below screen

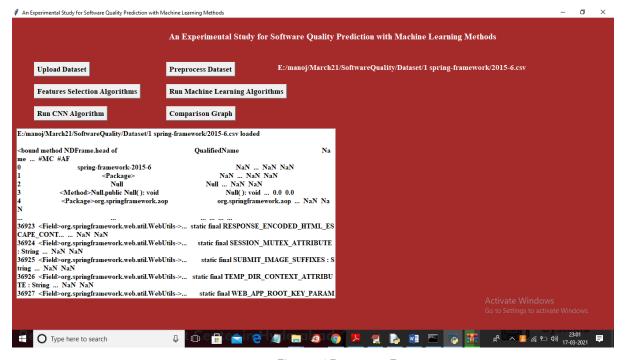


Figure :.4 Preprocess Dataset

In above screen displaying values from dataset and we can see dataset contains NAN (missing values) and string non numeric

N Figure 1

values and we need to replace all missing and non-numeric values with their count so click on 'Preprocess Dataset' button

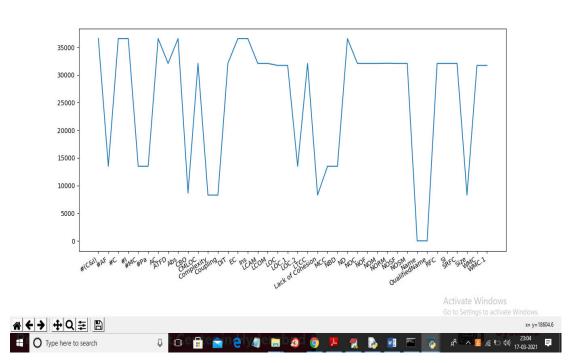


Figure: 5 Line graph.

In above graph x-axis represents column names and y-axis represents total missing values counts in that column and now close above graph to get below screen

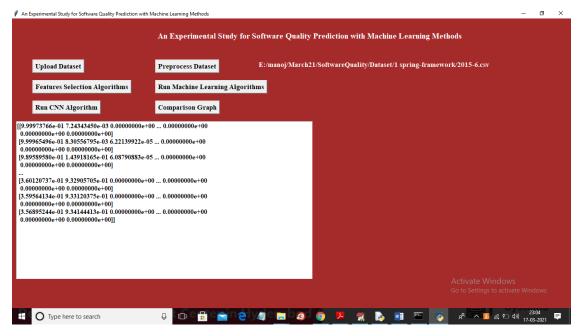


Figure : .6 Feature Selection Algorithms

In above screen all missing an string values are replace with numeric values and now click on 'Features Selection Algorithms' button to select important features from dataset and then split dataset into train and test part



Figure: 7 Graph

In above graph the box which contains value >0.5 will be consider as iportant attributes and now close above graph to get below screen

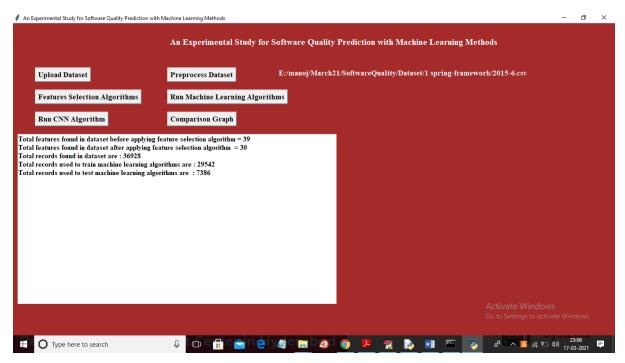


Figure: 8 Important Features And Dataset

In above screen before applying feature selection algorithm dataset contains 39 features/columns and after applying PCA feature selection we got 30 important features and dataset contains 36928 records and application using 7386 records for testing and 29542 records for training and now both train and test dataset is ready and now click on 'Run Machine Learning Algorithms' button to run all machine learning algorithms

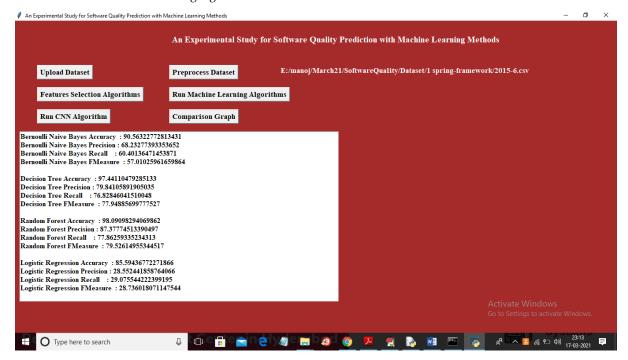


Figure: 9 Run Machine Learning Algorithms

In above screen we can precision, recall, accuracy and fscore for all algorithms

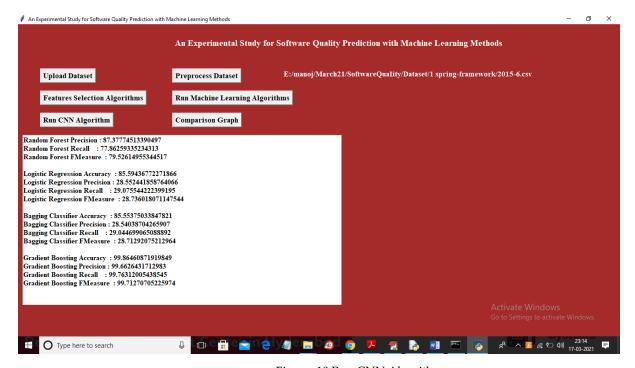


Figure: 10 Run CNN Algorithm

Now click on 'Run CNN Algorithm' button to run CNN algorithm and to get below screen

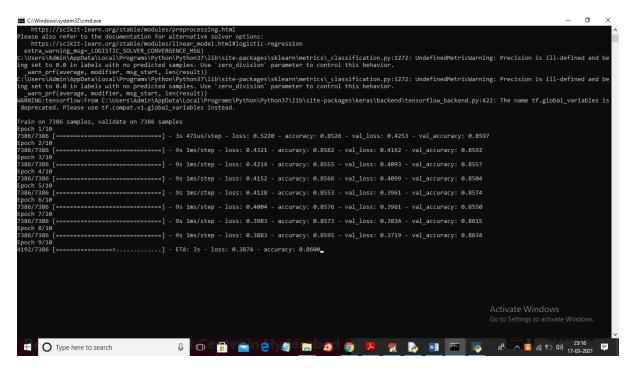


Figure: 11 Train CCN

In above screen to train CNN we took 10 iterations or epoch and at each epoch accuracy get better and loss get reduce and after 10 iterations will get below screen

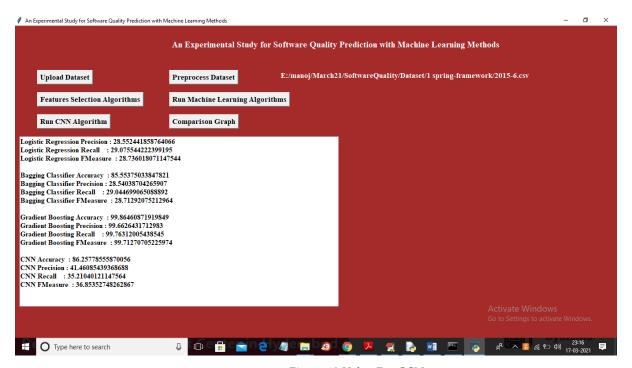


Figure:12 Value For CCN

In above screen we got output values for CNN also and now click on 'Comparison Graph' button to get below screen

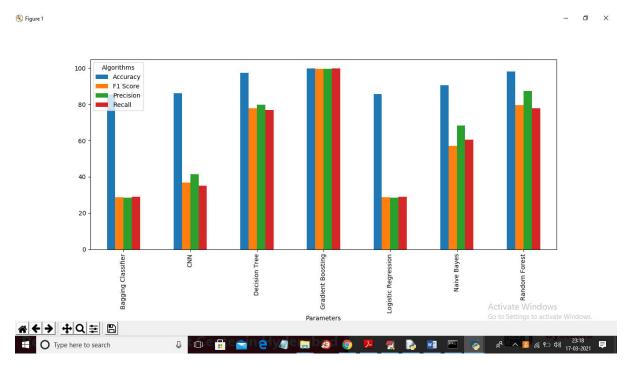


Figure:13 Comparison Graph

In above graph we are plotting accuracy, precision, recall and accuracy for each algorithm

7. CONCLUSION AND FUTURE SCOPE

In this project we have experimented classification algorithms using Scikit-learn library on two dataset. We have experimented with recent algorithms that support multi-class classification. The accuracies achieved by using these algorithms are 92.28% on EBSPM Dataset and 92.22% on ISBSG Dataset. In comparison to previous directly comparable studies, acceptable level multiclass quality prediction could be achieved

8. REFERENCES

- Vijay, T. John, D. M. G. Chand, and D. H. Done. "Software quality metrics in quality assurance to study the impact of external factors related to time." International Journal of Advanced Research in Computer Science and Software Engineering, 2017.
- 2. D. Bowes, T. Hall, and J. Petrić, "Software defect prediction: do different classifiers find the same defects?." Software Quality Journal, 26(2), 2018, pp. 525-552.

- X. Wang, Y. Zhang, L. Zhang and Y. Shi, "A Knowledge Discovery Case Study of Software Quality Prediction: ISBSG Database," 2010 IEEE/WIC/ACM International Conference on Web Intelligence and Intelligent Agent Technology, Toronto, ON, 2010, pp. 219-222.
- X. Wang, Y. Zhang, L. Zhang and Y. Shi, "A Knowledge Discovery Case Study of Software Quality Prediction Based on Classification Models: ISBSG Database," The 11th International Symposium on Knowledge Systems Sciences (KSS 2010), 2010.
- 5. E. Rashid, S. Patnaik, and V. Bhattacherjee, "Software quality estimation using machine learning: Case-Based reasoning technique," International Journal of Computer Applications, 2012
- 6. www.isbsg.org
- 7. https://goverdson.nl/
- 8. H. Huijgens,"Evidence-based software portfolio management: a tool description and evaluation", 20th International Conference on Evaluation and Assessment in Software Engineering (EASE '16), 201