
International Journal of Engineering Science and Advanced Technology (IJESAT)

Vol 24 Issue 09, SEP, 2024

ISSN No: 2250-3676 www.ijesat.com Page | 7

FALSE BOTTOM ENCRYPTION: DENIABLE ENCRYPTION FROM SECRET

SHARING

Humera Masood1, Hafsa Khatoon, Dr. K. Palani

1PG Scholar, Department of Information Technology, Shadan Women’s College of Engineering and Technology,

Hyderabad, Humeramaaood05@gmail.com
2Assistant Professor, Department of Computer Science and Engineering, Shadan Women’s College of Engineering

and Technology, khafsakhan12@gmail.com
3Professor, Department of Computer Science and Engineering, Shadan Women’s College of Engineering and

Technology, Hyderabad, India, principalswcet2020@gmail.com

ABSTRACT

We demonstrate how to use secret sharing to construct a deniable encryption technique. We can avoid both

computational intractability assumptions and data preprocessing, in contrast to the related concept of honey

encryption, which uses a preprocessing step in symmetric encryption to reshape the distribution of a plaintext

towards making the real plaintext indistinguishable from a cipher text for a fake message. This achieves deniability

against an attacker with sufficient computing power to compel decryptions and brute-force break a cipher text. In

accordance with the idea of plausible deniability, we have many decryption keys to reveal separate plaintexts

contained within the same encrypted text. For example, an attacker will be persuaded that a plaintext extracted from

a cipher text using a key that a victim divulged under duress is authentic, even while the true secret is still hidden.
Inauthentic Bottom Using the same key for both encryption and decryption, encryption creates a symmetric

technique that combines the features of deniable encryption and honeypot encryption. As a security feature, we

explicitly define and distinguish "deniable" from "plausibly deniable," demonstrating how, depending on the

plaintext distribution, plausible deniability reverts to (only) deniability. Our method, which is based on secret

sharing, is easy to use, lightweight, and effective in both encryption and decryption. We do not, therefore, depend on

computational intractability.

1. INTRODUCTION

Generally speaking, a sender and receiver must

first share information to communicate safely. In many

cases, encryption and good password protection may be
sufficient to safeguard your data. For instance, with

AES, the sender and receiver share the same key in a

symmetric encryption system. However, using the RSA

technique, the sender and receiver of an asymmetric-

key encryption technique exchange a public system

parameter and the recipient’s public key, with the

public key delivery occurring through public key

infrastructure. These general encryption techniques

offer a security guarantee against eavesdropping

attempts, but they fall short when faced with threats of

coercion. Even if the attacker does not have access to
the key, if it intercepts the cipher text, it may be able to

force both the sender and the receiver to decrypt the

message. Non-committing encryption [1] and deniable

encryption [2] have been presented as solutions to this

issue. Users can decrypt an existing cipher text

associated with a certain counterfeit message using

these two different encryption algorithms. The first

algorithm is called the sender’s encryption algorithm to

encrypt a message under a secret key sk. The second

algorithm, known as the faking algorithm, is publicly

known, and the sender uses this fake algorithm to

produce fake messages. Getting the same cipher text
from two different algorithms is computationally

cumbersome. In our work, we show how the actual

message and the fake message cipher texts can both be

produced using a single algorithm that also is

computationally efficient. There are many

circumstances under which plausible deniability may
also be necessary. If your opponents cannot obtain your

password, strong encryption can keep them out.

However, if the threat model incorporates coercion,

such as the prospect of a jail term or torture, you might

give up and hand over the key to rescue yourself. As a

result, the attacker would have access to the data,

perhaps putting you at risk for later repercussions. The

idea of plausible deniability originates in politics and

espionage and refers to one’s capacity to downplay

one’s culpability for, or knowledge of specific facts or

events. It may entail carrying out operations in a way
that leaves no trace, especially changing systems around

particular people, to enable them to honestly deny their

knowledge of what took place. Destruction of evidence

is another method that can be used to make a given

action plausible to deny, but there are also positive use-

cases as we will outline next. We question whether it is

conceivable to produce cipher text that appears to be for

certain claimed receivers but are actually for different

receivers. Imagine that Alice wants to secretly send her

friend John a message. If she encrypts and sends it to

John, she could be asked by her mother who the

message was for and command her to decrypt the
message. Consequently, John might get a call from

Alice’s mother, asking him to confirm as well what it

http://www.ijesat.com/

International Journal of Engineering Science and Advanced Technology (IJESAT)

Vol 24 Issue 09, SEP, 2024

ISSN No: 2250-3676 www.ijesat.com Page | 8

says. To prevent this from happening, Alice can encrypt

the message using deniable encryption. Alice will first

prepare a pair of texts. One is a trivial message for Bob,

whereas the other is a simple covert message for

John. John’s text is jointly encrypted with Bob’s text by
Alice using a suitable encryption algorithm. Alice posts

the cipher text to a public channel and requests her

friends to download the message. The only two people

who can successfully decrypt the cipher text are Bob

and John, but they produce two different messages: the

fake message and the real message. The term

‘‘successful decryption’’ refers to the fact that Bob and

John are able to decrypt and receive useful messages

from the sender. Alice can tell her mother that the

cipher text is for Bob and reveal the message that was

transmitted to Bob when questioned. Considering that

Bob only knows what he has received, he can also be a
trustworthy witness. Even if Alice’s mother thinks

something is concealed in the cipher text, she cannot

determine which of Alice’s friends the true recipient is.

In this case, Alice does not need to help John because

her mother would not be able to suspect John, unless

she suspects all of Alice’s friends.

2. EXISTING SYSTEM OF PROJECT

 However, using the RSA technique, the sender and

receiver of an asymmetric-key encryption

technique exchange a public system
 In our work, we show how the actual message and

the fake message cipher texts can both be produced

using a single algorithm that also is

computationally efficient.

 The second algorithm, known as the faking

algorithm, is publicly known, and the sender uses

this fake algorithm to produce fake messages.

Getting the same cipher text from two different

algorithms is computationally cumbersome.

 The first algorithm is called the sender’s encryption

algorithm to encrypt a message under a secret key

sk.
 Users can decrypt an existing cipher text associated

with a certain counterfeit message using these two

different encryption algorithms.

3. RELATED WORK

The concept of honey encryption [3] is a generic

construction to extend conventional encryption by

making decryptions under the wrong key ‘‘appear to be

plausible’’. This is accomplished by transforming the

input plaintext towards obtaining a certain fixed

distribution that matches the distribution of the
decryption result under a different key. Consequently, if

the (same) cipher text is decrypted under the real or the

fake key, the resulting plaintexts (one real, the other

being fake) will have approximately the same

distribution. The security of honey encryption relies on

the probability of an attacker judging a plaintext to be

legitimate can be calculated by the encrypting party at

the time of encryption. The main difference to deniable

encryption and to our scheme is that honey encryption

does not insert a second plaintext into the cipher text.
As in conventional encryption, there still is only one

plaintext inside the cipher text, but false decryptions

should become less recognizable. This approach aims at

retaining security even against keys or plaintexts of low

min-entropy, which can be efficient to guess. The main

difference to deniable encryption and our scheme is

thus in the attacker model: we assume (as does deniable

encryption) that the attacker puts force on the

plaintext owner to open the cipher text, while honey

encryption lets the attacker attempt decryptions under

keys of its own (random) choice. The construction of

honey encryption makes use of distribution-
transforming encoders that aim to shape the distribution

of a random plaintext towards a desired and fixed target

distribution. Our scheme can use such encoders as well,

as a source of plausibly looking plaintexts to act as

fakes. We will not make explicit use of such

transformations, but mention them as a possible

technical implementation of our assumption that fake

plaintexts are producible with the same distribution as

the real secret plaintexts. Canetti et al. [1] initially

developed the concept of deniable encryption. A

deniable shared key scheme and a public key scheme
are two types of deniable encryption. A straight forward

illustration of deniable encryption is the one-time pad:

Let m be the original message to be encrypted, and c be

the cipher text such that c = m Lk where k represents

the shared key. Nobody can refute the encrypt or’s

assertion that the message is m ′ using the key k ′ = m ′

Lc. In Canetti et al. [2] technique, falsified messages

with strong justification were presented using the idea

of a translucent set: roughly speaking, this is a set

whose membership is not decidable efficiently without

trapdoor information. Encryption of a bit b is done by

emitting a random string if b = 0 or a string from the
translucent set T if b = 1. Under duress, the plaintext bit

is deniable, since the claim of having taken a random

string or one from T is not efficiently verifiable without

the trapdoor information to decide its membership in T .

According to Canetti et al., this system is sender-

deniable, meaning that the sender can produce proof of

falsified messages. Canetti et al. also extended the

scheme through an interactive approach, to support

receiver-deniability and combined them into a bi-

deniable encryption scheme. Numerous researchers

have constructed translucent sets using a variety of
methods based on this concept. Samplable encryption

was implemented by Dürmuth and Freeman [4] to

create a translucent set. A bi-translucent set built on a

lattice was created by O’Neill et al. [5], in which they

emphasize that the schemes are no interactive and

http://www.ijesat.com/

International Journal of Engineering Science and Advanced Technology (IJESAT)

Vol 24 Issue 09, SEP, 2024

ISSN No: 2250-3676 www.ijesat.com Page | 9

involve no third parties as they build bi-deniable public-

key cryptosystems that allow both the sender and the

recipient to communicate simultaneously.

4. PROPOSED SYSTEM
 In contrast, the related idea of honey encryption

uses a preprocessing phase in symmetric

encryption to reshape a plaintext's distribution so

that the true plaintext and cipher text data are

identical.

 For example, in a symmetric encryption system, the

sender and the recipient share the same key when

using AES.

 Deniable encryption comes in two flavors: a public

key scheme and a shared key scheme. The one-time

pad provides a simple example of deniable

encryption: Let m represent the original message
that has to be encrypted.

 Similar to our aspirations, ambiguous multi-

symmetric cryptography has been developed in the

field of symmetric encryption. They address a

number of attack scenarios, such as those involving

selected cipher text, known-plaintext, and others.

5. MODULES

1. User Interface Design

We create the project's windows in this module. All

users can securely log in using these windows. Users
can only connect to the server by providing their login

and password in order to establish a connection. The

user can log in straight to the server if they have

previously left; otherwise, they must register their

information, including their email address, password,

and username. In order to maintain the upload and

download rates, the server will create an account for

each user. The user ID will be set to name. Typically,

logging in allows access to a certain page.

2. Authority Server

A server for authenticators is the initial module. The
server must first create an account and enter their

password. The key request is from the authority server.

There is a key generator on the authority server. There

is a request on the authority server. It was going to

contain user requests from the database as well as

owner requests.

3. Owner
the third section. Owners can access their register by

logging in with authorization from the authority server.

The authority server requires a user ID and password to
access. The owner has a data store uploaded. Data that

has been uploaded is viewable. Data sharing is

approved by the owner.

4. User

A user is the fourth module. The user has a password-

protected register with an ID. The authority center

grants permissions for the user to log in. After adding a

user, the authority server must log in. The user can
search through data.

5. CSP(Cloud Service Provider)

Cloud has a module that is five.A user ID and password

are required to access CSP.CSP has data that is stored

in the database.It is possible for CSP to have both

owner and user details. A database's stores

6. TECHNIQUES USED IN PROJECT

6.1. Honey Encryption

A Honey Encryption involves repeated decryption with

random keys; this is equivalent to picking random
plaintexts from the space of all possible plaintexts with

a uniform distribution. This is effective because even

though the attacker is equally likely to see any given

plaintext, most plaintexts are extremely unlikely to be

legitimate i.e. the distribution of legitimate plaintexts is

non-uniform. Honey encryption defeats such attacks by

first transforming the plaintext into a space such that the

distribution of legitimate plaintexts is uniform. Thus an

attacker guessing keys will see legitimate-looking

plaintexts frequently and random-looking plaintexts

infrequently. This makes it difficult to determine when
the correct key has been guessed. In effect, honey

encryption "[serves] up fake data in response to every

incorrect guess of the data or encryption key. The

security of honey encryption relies on the fact that the

probability of an attacker a plaintext to be legitimate

can be calculated (by the encrypting party) at the

encryption. This makes honey encryption difficult to

apply in certain applications e.g. where the space of

plaintexts is very large or the distribution of plaintexts

is unknown. It also means that honey encryption can be

vulnerable if this probability is miscalculated. For

example, it is vulnerable to known-plaintext attacks: if
the attacker has a crib that a plaintext must match to be

legitimate, they will be able to brute-force even Honey

Encrypted data if the encryption did not take the crib

into account.

6.2. Hash Algorithm

Hashing is mostly made up of three parts:

1. Key: An index or location for an item's storage in a

data structure is determined by the hash function, which

accepts any string or integer as input.

2. Hash Function: After receiving the input key, the
hash function outputs the element's index in an array

known as a hash table. The hash index is the name

given to the index.

3. Hash Table: A hash table is a type of data structure

that uses a unique function known as a hash function to

http://www.ijesat.com/

International Journal of Engineering Science and Advanced Technology (IJESAT)

Vol 24 Issue 09, SEP, 2024

ISSN No: 2250-3676 www.ijesat.com Page | 10

key values to values. Data is hashed and stored

associatively in an array with distinct indexes for each

data value.

Figure 6.3.1 Hash algorithm Example

Real-Time Applications of Hash Data structure

 Hash is utilized to store data in a cache for quick
access. It can also be used to verify passwords.

 Hash functions as a message digest in

cryptography.

6.3. SYMMETRIC ALGORITHM USED

Symmetric-key algorithms are algorithms for

cryptography that use the same cryptographic keys for

both the encryption of plaintext and the decryption of

cipher text. The keys may be identical, or there may be

a simple transformation to go between the two keys.[1]

The keys, in practice, represent a shared secret between
two or more parties that can be used to maintain a

private information link.[2] The requirement that both

parties have access to the secret key is one of the main

drawbacks of symmetric-key encryption, in comparison

to public-key encryption (also known as asymmetric-

key encryption). However, symmetric-key encryption

algorithms are usually better for bulk encryption. With

exception of the one-time pad they have a smaller key

size, which means less storage space and faster

transmission. Due to this, asymmetric-key encryption is

often used to exchange the secret key for symmetric-

key encryption.

Figure 6.3.2 Symmetric key algorithms

7. DISCUSSION AND CONCLUSION

We have shown a conceptually simple method of

concealing information inside an existing sequence of

strings, allowing for deceptive decryption in case of

forced revelation of decryption keys. At a practical

level, matters of storing or remembering the decryption

keys have not been discussed, but the use of passwords,
for example, is not difficult to imagine here: suppose

that whenever we require random values to be chosen,

we do so by invoking a pseudorandom number

generator (PRNG, e.g., the standardized password-

based key derivation function Argon2) that is seeded

with a password that the user chooses. In that way, the
storage of the value-pair list that constitutes the secret

key ski for the message mi , boils down to the choice of

a password to open the message mi , from which all

random quantities in the process can be recomputed

with the password as a seed for a PRNG. The

implications to security are, in that sense, to be

considered carefully, as the overall entropy about the

secret reduces to the min-entropy of the password

choice process that determines the hardness of guessing

the password, which is the Shannon entropy. Further

generalizations may be the inclusion of a third party to

establish a four-eyes principle in the opening of a
message. That is, for example, one could substitute ρi,1,

. . . , ρi,ni by products ρ (a) i,1 • ρ (b) i,1 . . . , ρ (a) i,ni •

ρ (b) i,ni , with the individual factors coming from key-

bases, respectively root keys, that two persons, Alice

and Bob, are given. In that case, an adversary forcing

Alice to cooperate would also have to convince Bob to

cooperate, in order to discover a meaningful

message. As yet another variant, note that the role of the

factors from root key r and from c is ‘‘symmetric’’, and

hence one could alternate the appending of parts to c

with adding parts to the r. Storing c in a remote location
and keeping r on one’s own local computer then creates

the seeming appeal of putting new information into c

without actually letting c visibly grow. This instance of

the scheme is, however, not considered as useful here,

since it is nothing else than storing an encrypted version

of a message locally, and letting the key to this message

be stored remotely at a possibly untrusted location

Practical room for improvement is in the scheme’s

necessity to remember and use all secret keys whenever

there is a need to modify messages after they went into

the ciphertextc. Abandoning this requirement, the key

storage and management requirements fall back to those
of a conventional secret key encryption with fixed key

sizes. Hence, its ‘‘information theoretic’’ security

guarantees are in any case bounded by the size of the

secret root key to be guessed, but the brute force

complexity is still larger than just guessing the secret

key, since the adversary may, except if there is so far

only 1 message in c, still be uncertain about which parts

of c may have been used to represent the secret

message. Therefore, the concept of (plausible)

deniability is the added value over brute-force attack

resilience. Based on our review of literature on deniable
encryption schemes, the user can, in past schemes,

come up with only one fake message as a counterpart to

defend its secret. In contrast, our scheme allows us to

bring more than one fake message to hide a

secret. Also, this encryption scheme is editable in the

http://www.ijesat.com/

International Journal of Engineering Science and Advanced Technology (IJESAT)

Vol 24 Issue 09, SEP, 2024

ISSN No: 2250-3676 www.ijesat.com Page | 11

sense that at any instant in time, we can update our

message by changing only one element in the cipher

text or by changing the key indices. Furthermore, the

scheme gives us the freedom to delete any message

encrypted inside the cipher text simply by replacing at
least one element from the cipher text with a random

number. Deleting a message gives us the flexibility to

prevent the user who was earlier accessing that message

from doing it again. If the user wants to decrypt the

cipher text with the older key, the outcome will

undoubtedly dissatisfy him. Consequently, False-

Bottom Encryption extends deniable encryption by the

functionality of adding, editing and deleting possibly

several plaintexts inside the ciphertext. Our security

definition does not account for adversaries profiling the

access patterns of a user, which calls for additional

techniques to either randomize or ‘‘equalize’’ all access
sequences. Future work will thus investigate extensions

to our scheme by means of private information retrieval

or other techniques (see the related work, in particular

[22]), to analyze if information-theoretic security

remains accomplishable or deteriorates against attackers

that profile the (physical) device usage.

8.RESULTS:

fig. 7.1 index page

fig.7.2 owner register and login

fig. 7.3 the authroity center approves the request for the

owner login

fig.7.4 user registration and login

fig.7.5 user registration and login

fig.7.6 the authority center approves the request for the

user login

http://www.ijesat.com/

International Journal of Engineering Science and Advanced Technology (IJESAT)

Vol 24 Issue 09, SEP, 2024

ISSN No: 2250-3676 www.ijesat.com Page | 12

fig.7.7 owner/user can upload the file

fig.7.8 the uploaded file is encryted in cypher language

fig. 7.9 the encrpted file generates a hash key

fig. 7.10 the user can access the encrypted data

fig .7.11 the user requests for a hash key from the

authority center

fig. 7.12 the authority center approves the key request

fig. 7.13 the user can download the encrypted file

fig.7.14 the generated hash key is used to decrypt the

file

fig. 7.15 the decrypted file can be downloaded and

accessed in its original form

FUTURE ENHANCEMENT

Thus, future research will examine ways to expand our

scheme using private information retrieval or other

methods (refer to the related work, in particular) to
examine whether information-theoretic security can still

be achieved or if it becomes less effective against

attackers who profile the (physical) device usage.

REFERENCES
[1] R. Canetti, U. Feige, O. Goldreich, and M. Naor,

‘‘Adaptively secure multi-party computation,’’ in Proc.

28th Annu. ACM Symp. Theory Com- put., Philadelphia,

PA, USA, 1996, pp. 639–648. [Online]. Available:

http://portal.acm.org/citation.cfm?doid=237814.238015

http://www.ijesat.com/
http://portal.acm.org/citation.cfm?doid=237814.238015

International Journal of Engineering Science and Advanced Technology (IJESAT)

Vol 24 Issue 09, SEP, 2024

ISSN No: 2250-3676 www.ijesat.com Page | 13

[2] R. Canetti, C. Dwork, M. Naor, and R. Ostrovsky,

‘‘Deniable encryption,’’ in Proc. 17th Annu. Int.

Cryptol. Conf. (Lecture Notes in Computer Science),

vol. 1294. Santa Barbara, CA, USA: Springer, 1997, pp.

90–104.
[3] A. Juels and T. Ristenpart, ‘‘Honey encryption:

Security beyond the brute-force bound,’’ in Advances in

Cryptology—EUROCRYPT (Lec- ture Notes in

Computer Science), vol. 8441, D. Hutchison, T.

Kanade,

[4] J. Kittler, J. M. Kleinberg, A. Kobsa, F. Mattern, J.

C. Mitchell, M. Naor, O. Nierstrasz, C. Pandu Rangan,

B. Steffen, D. Terzopoulos, D. Tygar, G. Weikum, P.

Q. Nguyen, and E. Oswald, Eds. Berlin, Germany:

Springer, 2014, pp. 293–310, doi: 10.1007/978-3-642-

55220-5_17.

[5] M. Durmuth and D. M. Freeman, ‘‘Deniable
encryption with negli- gible detection probability: An

interactive construction,’’ in Advances in Cryptology—

EUROCRYPT (Lecture Notes in Computer Science),

vol. 6632, D. Hutchison, T. Kanade, J. Kittler, J. M.

Kleinberg, F. Mattern,

[6] J. C. Mitchell, M. Naor, O. Nierstrasz, C. Pandu

Rangan, B. Steffen, M. Sudan, D. Terzopoulos, D.

Tygar, M. Y. Vardi, G. Weikum, and K. G. Paterson,

Eds. Berlin, Germany: Springer, 2011, pp. 610–626,

doi: 10.1007/978-3-642-20465-4_33.

[7] A. O’Neill, C. Peikert, and B. Waters, ‘‘Bi-deniable
public-key encryption,’’ in Advances in Cryptology—

CRYPTO (Lecture Notes in Computer Science), vol.

6841, D. Hutchison, T. Kanade, J. Kittler, J. M.

Kleinberg,

[8] F. Mattern, J. C. Mitchell, M. Naor, O. Nierstrasz,

C. P. Rangan, B. Steffen, M. Sudan, D. Terzopoulos, D.

Tygar, M. Y. Vardi, G. Weikum, and P. Rogaway, Eds.

Berlin, Germany: Springer, 2011, pp. 525–542, doi:

10.1007/978-3-642-22792-9_30.

[9] M. Klonowski, P. Kubiak, and M. Kutylowski,

‘‘Practical deniable encryp- tion,’’ in SOFSEM 2008:

Theory and Practice of Computer Science (Lecture
Notes in Computer Science), V. Geffert, J. Karhumäki,

A. Bertoni, B. Preneel, P. Návrat, and M. Bieliková,

Eds. Berlin, Germany: Springer, 2008, pp. 599–609.

[10] P. Gasti, G. Ateniese, and M. Blanton, ‘‘Deniable

cloud storage: sharing files via public-key deniability,’’

in Proc. 9th Annu. ACM Workshop Pri- vacy Electron.

Soc., Chicago, IL, USA, 2010, p. 31. [Online].

Available:http://portal.acm.org/citation.cfm?doid=1866

919. 1866925

[11] M. H. Ibrahim, ‘‘A method for obtaining deniable

public-key encryption,’’ Int. J. Netw. Secur., vol. 8, no.
1, pp. 1–9, 2009.

[12] P. Chi and C. Lei, ‘‘Audit-free cloud storage via

deniable attribute- based encryption,’’ IEEE Trans.

Cloud Comput., vol. 6, no. 2, pp. 414–427, Apr.

2018. [Online]. Available: https://ieeexplore.ieee.

org/document/7090980/

[13] R. Canetti, S. Park, and O. Poburinnaya, ‘‘Fully

deniable interactive encryption,’’ in Advances in

Cryptology—CRYPTO (Lecture Notes in Computer
Science), vol. 12170, D. Micciancio and T. Ristenpart,

Eds. Cham, Switzerland: Springer, 2020, pp. 807–835,

doi: 10.1007/978-3-030- 56784-2_27.

[14] C. Dwork, M. Naor, and A. Sahai, ‘‘Concurrent

zero-knowledge,’’ J. ACM, vol. 51, no. 6, p. 851–898,

Nov. 2004, doi: 10.1145/1039488.1039489.

[15] M. Naor, ‘‘Deniable ring authentication,’’ in

Advances in Cryptology— CRYPTO (Lecture Notes in

Computer Science), vol. 2442, G. Goos,

[16] J. Hartmanis, J. van Leeuwen, and M. Yung, Eds.

Berlin, Germany: Springer, 2002, pp. 481–498, doi:

10.1007/3-540-45708-9_31.
[17] R. W. Zhu, D. S. Wong, and C. H. Lee,

‘‘Cryptanalysis of a suite of deniable authentication

protocols,’’ IEEE Commun. Lett., vol. 10, no. 6, pp.

504–506, Jun. 2006.

[18] A. Fiat and M. Naor, ‘‘Broadcast encryption,’’ in

Proc. Annu. Int. Cryptol. Conf., Jan. 1993, pp. 480–491.

[19] J. Li, Y. Wang, Y. Zhang, and J. Han, ‘‘Full

verifiability for out- sourced decryption in attribute

based encryption,’’ IEEE Trans. Services Comput., vol.

13, no. 3, pp. 478–487, May 2020. [Online]. Available:

https://ieeexplore.ieee.org/document/7936626/
[20] J. Li, Q. Yu, and Y. Zhang, ‘‘Hierarchical

attribute based encryption with continuous leakage-

resilience,’’ Inf. Sci., vol. 484, pp. 113–134, May 2019.

[Online]. Available: https://linkinghub.elsevier.

com/retrieve/pii/S0020025519300684

[21] J. Li, W. Yao, Y. Zhang, H. Qian, and J. Han,

‘‘Flexible and fine-grained attribute-based data storage

in cloud computing,’’ IEEE Trans. Services Comput.,

vol. 10, no. 5, pp. 785–796, Sep. 2017. [Online].

Available:

http://ieeexplore.ieee.org/document/7390098/

[22] S. Reddy, P. S. Reddy, and P. Sravanthi, ‘‘Audit
free cloud stor- age via deniable attribute base

encryption for protecting user pri- vacy,’’ Int. J. Sci.

Eng. Technol. Res., vol. 5, no. 17, pp. 3449–3451, 2016.

[23] R. Bassous, R. Bassous, H. Fu, and Y. Zhu,

‘‘Ambiguous multi-symmetric cryptography,’’ in Proc.

IEEE Int. Conf. Commun. (ICC), Jun. 2015, pp. 7394–

7399.

[24] A. Chakraborti, C. Chen, and R. Sion, ‘‘POSTER:

DataLair: A storage block device with plausible

deniability,’’ in Proc. ACM SIGSAC Conf. Comput.

Commun. Secur., Oct. 2016, pp. 1757–1759. [Online].
 Available:

 https://dl.acm.org/doi/10.1145/2976749.

2989061

[25] C. Chen, A. Chakraborti, and R. Sion, ‘‘PD-DM:

An efficient locality-preserving block device mapper

http://www.ijesat.com/
http://dx.doi.org/10.1007/978-3-642-55220-5_17
http://dx.doi.org/10.1007/978-3-642-55220-5_17
http://dx.doi.org/10.1007/978-3-642-20465-4_33
http://dx.doi.org/10.1007/978-3-642-22792-9_30
http://portal.acm.org/citation.cfm?doid=1866919.%201866925
http://portal.acm.org/citation.cfm?doid=1866919.%201866925
http://dx.doi.org/10.1007/978-3-030-56784-2_27
http://dx.doi.org/10.1007/978-3-030-56784-2_27
http://dx.doi.org/10.1145/1039488.1039489
http://dx.doi.org/10.1007/3-540-45708-9_31
http://ieeexplore.ieee.org/document/7390098/

International Journal of Engineering Science and Advanced Technology (IJESAT)

Vol 24 Issue 09, SEP, 2024

ISSN No: 2250-3676 www.ijesat.com Page | 14

with plausible deniability,’’ Proc. Privacy Enhancing

Technol., vol. 2019, no. 1, pp. 153–171, Jan. 2019.

[Online]. Available:

https://petsymposium.org/popets/2019/ popets-2019-

0009.php
[26] C. Chen, X. Liang, B. Carbunar, and R. Sion,

‘‘SoK: Plausibly deni- able storage,’’ Proc. Privacy

Enhancing Technol., vol. 2022, no. 2, pp. 132–151,

Apr. 2022. [Online]. Available: https://petsymposium.

org/popets/2022/popets-2022-0039.php

[27] E.-O. Blass, T. Mayberry, G. Noubir, and K.

Onarlioglu, ‘‘Toward robust hidden volumes using

write-only oblivious RAM,’’ in Proc. ACM SIGSAC

Conf. Comput. Commun. Secur. New York, NY, USA:

Association for Computing Machinery, Nov. 2014, pp.
203–214, doi: 10.1145/2660267.2660313.

[28] C. Hargreaves and H. Chivers, ‘‘Detecting hidden

encrypted vol- umes,’’ in Communications and

Multimedia Security, B. De Decker and I. Schaumuller-

Bichl, Eds. Berlin, Germany: Springer, 2010, pp.

233–244.

http://www.ijesat.com/
http://dx.doi.org/10.1145/2660267.2660313

