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Abstract: When training for hazardous operations, real-time stress detection is an asset for optimizing task performance 

and reducing stress. Stress detection systems train a machine-learning model with physiological signals to classify stress 

levels of unseen data. Unfortunately, individual differences and the time-series nature of physiological signals limit the 

effectiveness of generalized models and hinder both post-hoc stress detection and real-time monitoring. This study 

evaluated a personalized stress detection system that selects a personalized subset of features for model training. The 

system was evaluated post-hoc for real-time deployment. Further, traditional classifiers were assessed for error caused by 

indirect approximations against a benchmark, optimal probability classifier (Approximate Bayes; ABayes). Healthy 

participants completed a task with three levels of stressors (low, medium, high), either a complex task in virtual reality 

(responding to spaceflight emergency fires, n =27) or a simple laboratory-based task (N-back, n =14). Heart rate, blood 

pressure, electrodermal activity, and respiration were assessed. Personalized features and window sizes were compared. 

Classification performance was compared for ABayes, support vector machine, decision tree, and random forest. The 

results demonstrate that a personalized model with time series intervals can classify three stress levels with higher accuracy 

than a generalized model. However, cross-validation and holdout performance varied for traditional classifiers vs. ABayes, 

suggesting error from indirect approximations. The selected features changed with window size and tasks, but found blood 

pressure was most prominent. The capability to account for individual difference is an advantage of personalized models 

and will likely have a growing presence in future detection systems. 

1. INTRODUCTION 

Despite extensive training in responding to an emergency, 

a person’s response to an actual emergency can be 

negatively affected by the stressfulness of the situation. 

Stress can result in a cascade of physiological changes that 

may alter. Behavioral patterns, situational awareness, 

decision making, and cognitive resources [1].An inability 

to cope with the stress of a high-stress condition cande 

crease task performance and thereby risk mission failure, 

injury, or death [2]. Consequently, developing resiliency to 

this situational stress through improved training may lead 

to better outcomes. To that end, using real-time monitoring 

of a person’s stress responses to customize the stressfulness 

of training scenarios may, in turn, lead to more appropriate 

handling of actual hazardous operation [3], [4].            

Stress detection using machine learning has been 

challenging for several reasons. First, there are individual 

differences in the appraisal of, and physiological responses 

to, stressful situations. Numerous stress detection 

approaches have attempted to reduce technical complexity 

by generalizing their models to a broad population, or the 

‘‘average’’ response [3]. However, the stress response to a 

unique situation is largely subjective, and personalized 

stress detection models may be more robust to individual 

differences [5], [6].The second challenge is that the time 

series nature of physiological signals can be problematic. 

The physiological stress response has temporal and feature 

correlations. These correlations may violate the machine 

learning assumption that the data are independently and 

identically distributed, thereby leading to biased results [7].                 

An additional challenge is interpreting how well model 

estimations match the true conditional probabilities of a 

subject’s stress levels. Stress detection models rely on 

traditional machine learning algorithms that make data-

driven approximations to estimate the chance that the 

individual is experiencing a state of stress given their 

physiological responses. However, these estimations are 

often indirect and without a benchmark for comparison. 

From classical statistics research, the Bayes theorem is 

theoretically the optimal solution and a classifier given the 

same parameters as Bayes theorem will have the lowest 

probability of error [8]. The Bayes theorem uses an 

empirical density distribution as a true prior probability, 

which can be used to calculate the conditional probability 

of each class. The classifier selects the class with the 

greatest posterior probability of occurrence, also known as 

maximum a posteriori. Machine-learning algorithms 

attempt to approximate the density distributions. If the 

density estimates of the classifier converge to the true 

densities, then the estimated probability represents the true 

probability of occurrence and a classifier that approximates 

Bayes becomes an Optimal  Bayes classifier. However, 

these approximations can have varying accuracy due to 

assumptions made by the algorithm, such as independence 

of predictors [9]. Thus, it can be difficult to interpret the 

model’s logic. Physiological systems are known to have a 

high degree of dependence with regard to a stress response, 

because they are often initiated by the same neuro 

endocrine axis [10]. Some researchers have shown that 

classifiers may account for dependencies using multivariate 

kernel density estimators [11]. Therefore, it may be 

beneficial to evaluate supervised machine learning 

classifiers against a benchmark optimal classifier that 

approximates Bayes using a density distribution estimated 

through multivariate kernel density estimation for stress 
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detection. To achieve real-time and continuous monitoring 

of stress levels, new approaches are needed to analyze time 

series for physiologically-based stress detection [12]. Real-

time stress detection can enable closed-loop automation to 

either modify the training environments to better match the 

trainee’s responses or better assess individual stress during 

staged or real operations [13]. In datasets with repeated 

measurements at multiple times that present uncertainty 

from randomness or incompleteness, such as multiple 

measures of physiological data, multivariate kernel density 

estimators may help increase detection accuracy [11].               

To address these challenges, the goal of this research is to 

assess the objectivity, reliability, and validity of a 

personalized model methodology. The first research 

question focuses on objectivity, and whether the stressor 

levels can show distinct levels in personalized features 

used for the classification model while accounting for 

individual differences in physiology. This will provide 

confidence that the model is designed for the appropriate 

context and that the training data reflect distinct ground 

truth levels. The second research question focuses on the 

system’s reliability by evaluating the performance of the 

time-series interval approach using a post-hoc model 

comparing between a standard laboratory cognitive task 

and a complex job-specific task, window sizes,  classifier 

validation techniques, and features selected for each 

individual. The third research question focuses on the 

validity of the system by seeking to understand whether 

indirect approximations influence traditional supervised 

machine learning classifiers compared to a Bayes classifier, 

known as Approximate Bayes (A Bayes), which uses direct 

approximations of optimal stress classes through 

multivariate kernel density estimation. This research is part 

of a larger development effort   to design VR training 

scenarios that can dynamically adapt a virtual environment 

using real-time stress detection [14], [15], [16]. To answer 

these research questions within the constraints of the larger 

system, the experiment will assess a time-series interval 

approach to stress detection for a post-hoc model of 

physiological response data, its accuracy in detecting 

participant stress using a collected during stressful tasks, 

and provide the architecture for a real-time stress detection 

system that uses this classification methodology. 

Validating a machine learning pipeline post-hoc allows for 

translation to real-time stress detection and applications for 

stress monitoring. 
2. LITERATURE SURVEY 

 

1) Real-World Driver Stress Recognition and Diagnosis 

Based on Multimodal Deep Learning and Fuzzy EDAS 

Approaches 

Abstract: Mental stress is known as a prime factor in road 

crashes. The devastation of these crashes often results in 

damage to humans, vehicles, and infrastructure. Likewise, 

persistent mental stress could lead to the development of 

mental, cardiovascular, and abdominal disorders. Preceding 

research in this domain mostly focuses on feature 

engineering and conventional machine learning 

approaches. These approaches recognize different levels of 

stress based on handcrafted features extracted from various 

modalities including physiological, physical, and 

contextual data. Acquiring good quality features from these 

modalities using feature engineering is often a difficult job. 

Recent developments in the form of deep learning (DL) 

algorithms have relieved feature engineering by 

automatically extracting and learning resilient features. 

This paper proposes different CNN and CNN-LSTSM-

based fusion models using physiological signals (SRAD 

dataset) and multimodal data (AffectiveROAD dataset) for 

the driver’s two and three stress levels. The fuzzy EDAS 

(evaluation based on distance from average solution) 

approach is used to evaluate the performance of the 

proposed models based on different classification metrics 

(accuracy, recall, precision, F-score, and specificity). Fuzzy 

EDAS performance estimation shows that the proposed 

CNN and hybrid CNN-LSTM models achieved the first 

ranks based on the fusion of BH, E4-Left (E4-L), and E4-

Right (E4-R). Results showed the significance of 

multimodal data for designing an accurate and trustworthy 

stress recognition diagnosing model for real-world driving 

conditions. The proposed model can also be used for the 

diagnosis of the stress level of a subject during other daily 

life activities. 

2) Stress detection in daily life scenarios using smart 

phones and wearable sensors: A survey 

Abstract: Stress has become a significant cause for many 

diseases in the modern society. Recently, smartphones, 

smartwatches and smart wrist-bands have become an 

integral part of our lives and have reached a widespread 

usage. This raised the question of whether we can detect 

and prevent stress with smartphones and wearable sensors. 

In this survey, we will examine the recent works on stress 

detection in daily life which are using smartphones and 

wearable devices. Although there are a number of works 

related to stress detection in controlled laboratory 

conditions, the number of studies examining stress 

detection in daily life is limited. We will divide and 

investigate the works according to used physiological 

modality and their targeted environment such as office, 

campus, car and unrestricted daily life conditions. We will 

also discuss promising techniques, alleviation methods and 

research challenges. 

3) A Review on Mental Stress Assessment Methods Using 

EEG Signals 

Abstract: Mental stress is one of the serious factors that 

lead to many health problems. Scientists and physicians 

have developed various tools to assess the level of mental 

stress in its early stages. Several neuroimaging tools have 

been proposed in the literature to assess mental stress in the 

workplace. Electroencephalogram (EEG) signal is one 

important candidate because it contains rich information 

about mental states and condition. In this paper, we review 

the existing EEG signal analysis methods on the 

assessment of mental stress. The review highlights the 
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critical differences between the research findings and 

argues that variations of the data analysis methods 

contribute to several contradictory results. The variations in 

results could be due to various factors including lack of 

standardized protocol, the brain region of interest, stressor 

type, experiment duration, proper EEG processing, feature 

extraction mechanism, and type of classifier. Therefore, the 

significant part related to mental stress recognition is 

choosing the most appropriate features. In particular, a 

complex and diverse range of EEG features, including 

time-varying, functional, and dynamic brain connections, 

requires integration of various methods to understand their 

associations with mental stress. Accordingly, the review 

suggests fusing the cortical activations with the 

connectivity network measures and deep learning 

approaches to improve the accuracy of mental stress level 

assessment. 

4) Stress Monitoring Using Machine Learning, IoT and 

Wearable Sensors 

Abstract: The Internet of Things (IoT) has emerged as a 

fundamental framework for interconnected device 

communication, representing a relatively new paradigm 

and the evolution of the Internet into its next phase. Its 

significance is pronounced in diverse fields, especially 

healthcare, where it finds applications in scenarios such as 

medical service tracking. By analyzing patterns in observed 

parameters, the anticipation of disease types becomes 

feasible. Stress monitoring with wearable sensors and the 

Internet of Things (IoT) is a potential application that can 

enhance wellness and preventative health management. 

Healthcare professionals have harnessed robust systems 

incorporating battery-based wearable technology and 

wireless communication channels to enable cost-effective 

healthcare monitoring for various medical conditions. 

Network-connected sensors, whether within living spaces 

or worn on the body, accumulate data crucial for evaluating 

patients’ health. The integration of machine learning and 

cutting-edge technology has sparked research interest in 

addressing stress levels. Psychological stress significantly 

impacts a person’s physiological parameters. Stress can 

have negative impacts over time, prompting sometimes 

costly therapies. Acute stress levels can even constitute a 

life-threatening risk, especially in people who have 

previously been diagnosed with borderline personality 

disorder or schizophrenia. To offer a proactive solution 

within the realm of smart healthcare, this article introduces 

a novel machine learning-based system termed “Stress-

Track”. The device is intended to track a person’s stress 

levels by examining their body temperature, sweat, and 

motion rate during physical activity. The proposed model 

achieves an impressive accuracy rate of 99.5%, showcasing 

its potential impact on stress management and healthcare 

enhancement. 

3. EXISTING SYSTEM 

The physiological stress response involves the interaction 

between the nervous system and the endocrine system that 

aims to maintain physiological integrity under changing 

environmental demands. The time course of the 

physiologic responses to stress varies by system and by the 

intensity and duration of the stressor; they are neither 

physiologically independent nor statistically orthogonal. 

After the psychological appraisal of a stressor, neural 

ganglia pathways are activated almost instantaneously to 

evoke very rapid responses via  local neurotransmitters. For 

example, disinhibition of heart rate via vagal withdrawal 

occurs within milliseconds while a sympathetically-

mediated increase in heart occurs after a few seconds (5-10 

s) [10]. Sympathetic and sudomotor activity results in the 

opening of eccrine sweat glands on hands and feet, which 

occur about 1-5 seconds after stimuli [17]. On the other 

hand, the physiologic responses due to circulating 

chemicals take longer to manifest. Epinephrine is secreted 

from the adrenal medulla and range from milliseconds to 

minutes to exert their cardiovascular effects. Whereas, 

cortisol is initiated by the adrenal cortex 5–10 min after 

stressor onset and peak between 20 and 30 min [18]. These 

processes can act exclusively or in conjunction on target 

organs to potentiate (e.g., memory, muscle activation) or 

attenuate organ function (e.g., digestion, reproduction). 

Stress detection, by means of classifying these 

physiological responses into levels of stress via machine 

learning, continues to evolve and is motivated by the 

potential utility of continuously monitoring stress levels in 

real-time [12], [21]. Stress detection systems have been 

developed for drivers in semi-urban scenarios [22], [23], 

patients undergoing virtual reality therapy [24], individuals 

in working environments [25], and people that need help 

managing daily stress [21], [26], [27], [28], [29], [30]. 

Stress detection can also be applied to a variety of human-

machine interfaces (HMIs) which may monitor stress, but 

also infer the cognitive state of the user to adapt system 

functionality [31]. Examples of HMIs that may use stress 

detection include wearable devices, voice recognition 

systems, eye tracking systems, facial expression analysis, 

and brain/body computer interfaces [12], [32]. However, 

these HMIs may not be able to accurately detect stress in 

all individuals, and the accuracy of stress detection may 

vary depending on the specific technology and approach 

used [33]. 

DISADVANTAGES: 

The complexity of data: Most of the existing machine 

learning models must be able to accurately interpret large 

and complex datasets to find Stress Detection. 

• Data availability: Most machine learning models require 
large amounts of data to create accurate predictions. If data 

is unavailable in sufficient quantities, then model accuracy 

may suffer. 

• Incorrect labeling: The existing machine learning models 
are only as accurate as the data trained using the input 

dataset. If the data has been incorrectly labeled, the model 

cannot make accurate predictions. 

4. PROPOSED SYSTEM 

This paper describes the development of a personalized 

physiological-based stress detection system to classify 
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acute stress using feature selection on intervals of the 

time-series data. To train the machine learning model, 

participant physiological signals were collected for three 

stressor levels during either a spaceflight emergency fire 

procedure on a VR International Space Station (VR-ISS) 

[46], [47] or a well-validated and less-complex N-back 

mental workload task [48]. Several previous studies have 

detected stress induced by N-back tasks via machine 

learning methods, both alone [48], [50] and with another 

job-specific task [51]. Therefore, comparing a jobs pecific 

VR-ISS task to the N-back using the same personalized 

approach is a way to assess the system’s reliability can 

work for multiple stress detection tasks. Each participant 

had features selected at different interval window sizes, 

then those personalized features trained the classifier 

model, and subsequently tested the classifier’s predictive 

accuracy. Since the stress response is complex and often 

unique, the analysis will explore which features are 

selected most for individuals depending on window size, 

and how this changes classification performance. 

Classifier performance was assessed using both holdout 

and cross-validation validation techniques to simulate 

how the model may perform on unseen data as an analog 

for deployment in real-time. 

ADVANTAGES 

The novelty and contribution of this research is to show 

that stress detection may benefit from using personalized 

time series approaches to quantify temporal patterns in 

physiological signals, to assess whether traditional 

classifiers are limited in approximating the optimal Bayes 

solution, that certain features may be better at different 

windows sizes, and that this approach has a suitable 

performance for detecting stress for a VR spaceflight 

emergency training procedure. 

SYSTEM ARCHITECTURE 

 


Fig 1: System Architecture 

5. UML DIAGRAMS 

1. CLASS DIAGRAM 

The cornerstone of event-driven data exploration is the 

class outline. Both broad practical verification of the 

application's precision and fine-grained demonstration of 

the model translation into software code rely on its 

availability. Class graphs are another data visualisation 

option. 

The core components, application involvement, and class 

changes are all represented by comparable classes in the 

class diagram. Classes with three-participant boxes are 

referred to be "incorporated into the framework," and each 

class has three different locations: 

• The techniques or actions that the class may use or reject 
are depicted at the bottom. 

 

 
 

Fig 5.1 shows the class diagram of the project 

2. USECASE DIAGRAM: 

A use case diagram in the Unified Modeling Language 

(UML) is a type of behavioral diagram defined by and 

created from a Use-case analysis. Its purpose is to present a 

graphical overview of the functionality provided by a 

system in terms of actors, their goals (represented as use 

cases), and any dependencies between those use cases. The 

main purpose of a use case diagram is to show what system 

functions are performed for which actor. Roles of the actors 

in the system can be depicted. 
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Fig 5.2 Shows the Use case Diagram  

 

3. SEQUENCE DIAGRAM: 

A sequence diagram in Unified Modeling Language 

(UML) is a kind of interaction diagram that shows how 

processes operate with one another and in what order. It is 

a construct of a Message Sequence Chart. Sequence 

diagrams are sometimes called event diagrams, event 

scenarios, and timing diagrams. 

 
 

Fig 5.3 Shows the Sequence Diagram 

 

6. RESULTS 

6.1 Output Screens 

 
 

Fig 6.1 Home Page 

In above screen is the home page 

 
 

Fig 6.2 Remote User Registration page 

In above screen we can enter the remote user login details  

 
Fig 6.3 Service Provider Login Page 

In above screen shows the service provider login page. 

 
Fig 6.4 Accuracy for the ml algorithms 
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In above screen shows the different machine learning 

algorithms accuracy. 

 
Fig 6.5 Accuracy in Bar Charts 

In above screen shows algorithms accuracy in bar charts. 

 

Fig 6.6 Stress detection Ratio 

In above screen shows the stress detection ration 

 

 
 

Fig 6.7 Stress Detection Status 

In above screen shows the results. 

 

7. CONCLUSION 

To address the challenges of vast differences between 

individual stress responses, the time-series nature of 

physiological signals, this research evaluated the 

objectivity, reliability, and validity of a real-time stress 

detection system using a personalized time-series interval 

approach. The simple and complex tasks were able to 

achieve distinct levels of stress enabling their use as 

machine learning ground truth. Analysis of the window 

sizes provided insight into which sensors/features were 

useful for varying time-intervals. The personalized model 

was found to have better performance than a generalized 

model. Furthermore, it evaluated the effect of indirect 

approximations by supervised machine learning classifiers 

evaluated against a benchmark optimal classifier, A Bayes. 

It was found that indirect approximations can have a 

minor-to moderate effect on classifier performance (-11% 

to +14% of A Bayes). The current findings suggest that a 

personalized system provides promising performance when 

compared to past research on multi-class stress detection. 

Researchers should be careful about the selection of HMIs, 

sensors, and features for models, as they may not account 

for inter and intra- individual differences in stress 

physiology. Future work will further investigate these 

personalized stress detection systems with the aim of 

implementing approaches that account for temporal 

changes in the individual stress response and physiological 

signals. 
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