
International Journal of Engineering Science and Advanced Technology (IJESAT)
Vol 25 Issue 01, JAN, 2025

 ISSN No: 2250-3676 www.ijesat.com Page | 37

Hybrid Machine Learning Models for the Detection

and Prevention of Cyber Fraud Apps

Sk. Jabeerulla1,

Asst. Professor,

Department Of Computer Science

And Engineering,

Vignan’s Lara Institute of

Technology and Science,

Guntur, India,

jabeershaik1482@gmail.com

Govindu Krishna Sai4

Department Of Computer Science

And Engineering,

Vignan’s Lara Institute of

Technology and Science,

Guntur, India,

krishnasaigovindu789@gmail.com

Madati Krishna Vamsi2

Department Of Computer Science

And Engineering,

Vignan’s Lara Institute of

Technology and Science,

Guntur, India,

krishnavamsi.madati@gmail.com

Nagam Guru Venkata Lokesh5

Department Of Computer Science

And Engineering,

Vignan’s Lara Institute of

Technology and Science,

Guntur, India,

nagamlokesh93@gmail.com

Koritala Nagaraju3

Department Of Computer Science

And Engineering,

Vignan’s Lara Institute of

Technology and Science,

Guntur, India,

koritalanagaraju8998@gmail.com

Abstract—The rapid growth of Android applications has in-
creased the risk of cyber fraud, because the malicious appli-
cations exploit the permissions of the users for carrying out
unauthorized activities like data theft, premium SMS fraud, and
ransomware attacks. The traditional methods of malware detec-
tion are signature- and heuristic-based approaches, which cannot
cope with sophisticated attacks such as zero-day malware and
obfuscation techniques. It will introduce a hybrid methodology,
synergistically combining Support Vector Machines and Artificial
Neural Networks, in order to identify malware by permission
patterns. A Genetic Algorithm (GA) is used in the system for
feature selection that optimizes the dataset for accuracy and
reduces the computational overhead.

The ANN model shows better detection performance with an
accuracy of 94.2%, which is higher than that of SVM, which
achieves 91.8%. The framework is further enhanced by the use
of a real-time detection system as a Flask-based web application,
where users can upload Android Package (APK) files for analysis.
The application extracts permissions based on static analysis
techniques and returns classification results as either malicious
or benign with a confidence score.

Some key contributions of this research include ANN integra-
tion into the improvement of nonlinear feature modeling, GA
usage to optimally choose features, and the creation of a real-
time malware detection system that is scalable and user-friendly.
The framework proposed hereby shows the power of machine
learning in enhancing Android application-based cybersecurity
and presents a stepping stone for further research work in
malware detection.

I. INTRODUCTION

A. Background

Android is the leader in the mobile landscape, with billions

of users and devices spread worldwide. Being an open-source

platform, it encourages an active ecosystem of developers

and applications. Yet, such openness leaves users exposed to

enormous security risks, mainly from malicious applications

distributed by third-party platforms and sometimes even offi-

cial application stores like Google Play.

Malicious applications, or malware, exploit user permissions

to execute unauthorized actions such as:

• Data Theft: Accessing sensitive user data such as con-

tacts, messages, and browsing history.

• Premium SMS Fraud: Sending expensive SMS mes-

sages without user consent.

• Ransomware Attacks: Encrypting user files and de-

manding money for decryption.

The threat has exponentially increased cyber fraud. Global

financial losses have crossed billions of dollars per year. With

mobile applications now central to essential daily functions,

including banking, communication, and healthcare, threats and

risks amplify.

B. Problem Statement

The conventional approaches used for malware detection

rely on either signature-based or heuristic-based methods.

Signature-based methods are highly efficient for known threats

but fail against zero-day attacks or malware employing ob-

fuscation techniques. Heuristic-based methods are prone to

high false-positive rates, often flagging harmless applications

as malicious.

Traditional approaches have limitations; hence, more adap-

tive and scalable solutions are needed. Machine Learning (ML)

models offer a promising alternative, but several challenges

remain:

http://www.ijesat.com/
mailto:jabeershaik1482@gmail.com
mailto:krishnasaigovindu789@gmail.com
mailto:krishnavamsi.madati@gmail.com
mailto:nagamlokesh93@gmail.com
mailto:koritalanagaraju8998@gmail.com

International Journal of Engineering Science and Advanced Technology (IJESAT)
Vol 25 Issue 01, JAN, 2025

 ISSN No: 2250-3676 www.ijesat.com Page | 38

• High-Dimensional Data: Android applications request a

large number of permissions, many of which are redun-

dant or irrelevant for detecting malicious intent.

• Model Scalability: The ability of models to perform well

on large datasets and varied types of malware.

• Real-Time Applicability: Deploying ML models in user-

friendly, scalable systems for real-world use.

C. Objectives

This research is meant to be a hybrid machine. A learning

model that detects and prevents cyber fraud in An- droid

applications, meeting the following significant challenges:

• Permissions-Based Detection: Using static analysis to

extract permissions from APK files as features for ML

models.

• Hybrid Model Integration: Employing SVM for base-

line performance and ANN for non-linear patterns.

• Feature Optimization: Using GA to reduce redundant

permissions and improve computational efficiency.

• Real-Time Deployment: Designing a scalable, web-

based detection system using Flask to enable real-time

analysis.

D. Contributions

Key contributions of this work are:

• ANN for Malware Detection: Integration of ANN with

permissions-based malware detection to achieve better

accuracy and flexibility.

• Feature Selection Using GA: Demonstrates that GA

can optimize large permission datasets, minimizing model

complexity without losing performance.

• Flask Real-Time Application: A user-friendly system

that makes machine learning predictions actionable and

useful for end users.

• Benchmarking Analysis: The performance of SVM and

ANN models is critically evaluated on Android malware

datasets, thereby providing a comparative assessment of

the strengths and weaknesses of both.

E. Significance

This paper overcomes significant challenges associated with

detection of Android malware by presenting an integration of

current state of the art approaches within machine learning and

deployable solutions. The proposed system demonstrates the

efficacy of combining static analysis with hybrid ML models

to effectively detect and mitigate cyber threats, paving the way

for future innovations in mobile cybersecurity.

II. LITERATURE SURVEY

A. Static Analysis

Static analysis involves examining an application’s code,

manifest files, and permissions without executing the APK.

The reasons why this approach is used widely in malware

detection is because of its computational efficiency, where it

can easily handle the large datasets. Tools like Androguard

allow for permissions extraction to identify patterns indicative

of malicious behavior.

Strengths of Static Analysis:

• Efficiency: Processes a large number of applications

quickly.

• Scalability: Suitable for analyzing thousands of apps

simultaneously.

• Reproducibility: Consistent feature extraction across anal-

yses.

Limitations of Static Analysis:

• Code Obfuscation: Malware developers often hide their

code to evade detection.

• Lack of Behavioral Insights: Does not capture runtime

behavior like API calls or network activity.

• Limited Zero-Day Detection: Relies heavily on prede-

fined patterns, which may not generalize to new threats.

B. Dynamic Analysis

Dynamic analysis evaluates an application’s behavior during

runtime in a sandbox environment. This approach identifies

malicious activities such as network communication, file ac-

cess, and API calls.

Advantages:

• Behavioral Insights: Captures real-time malicious activi-

ties.

• Zero-Day Detection: Identifies new malware based on

suspicious behavior patterns.

• Comprehensive: Observes all operational contexts of an

application.

Disadvantages:

• Resource-Intensive: Time- and computation-dependent.

• Scalability Issues: Not feasible for large-scale analysis.

• Evasion Techniques: Malware can detect sandbox envi-

ronments and modify its behavior.

C. Machine Learning for Malware Detection

Machine Learning offers significant advantages over tradi-

tional methods by identifying complex data patterns. Features

extracted from Android applications, such as permissions and

system calls, serve as input for ML models.

1) Support Vector Machine (SVM): The robustness of SVM

in handling high-dimensional data has established it as a go-to

approach for detecting malware.

Limitations:

• Struggles with non-linear patterns without kernel func-

tions.

• Computationally expensive for large datasets.

2) Artificial Neural Networks (ANNs): ANNs have great ca-

pabilities in modeling non-linear relationships and interactions

between features, hence, they can handle large and complex

datasets efficiently.

Limitations:

• Require hyperparameter tuning.

• Computationally intensive during training.

http://www.ijesat.com/

International Journal of Engineering Science and Advanced Technology (IJESAT)
Vol 25 Issue 01, JAN, 2025

 ISSN No: 2250-3676 www.ijesat.com Page | 39

D. Feature Selection Methods

Feature selection enhances model performance by eliminat-

ing irrelevant features.

1) Genetic Algorithm (GA): This approach uses a natu-

ral selection-based strategy to identify an optimal subset of

features, where their relevance is assessed by a fitness score

reflecting the performance of the model.

Advantages:

• Handles high-dimensional feature spaces.

• Captures interactions between permissions.

III. PROPOSED METHODOLOGY

A. Framework Overview

This section outlines the comprehensive methodology

adopted for the detection and prevention of cyber fraud

targeting Android applications. The proposed framework en-

compasses static analysis, feature selection using Genetic

Algorithm (GA), hybrid machine learning models, and real-

time deployment. Each phase is explained using flowcharts.

1) Dataset Preparation: Collect and preprocess benign and

malicious APK files.

2) Permissions Extraction: Extract static features (permis-

sions) from APKs through manifest file analysis.

3) Feature Selection: Use GA for the optimization of the

permission set by removing irrelevant and redundant

features.

4) Model Training: SVM and ANN models are to be trained

using the optimized feature set.

5) Real-Time Deployment: A Flask-based web application

is to be implemented for real-time malware detection.

Fig. 1. Overall Framework

B. Dataset Preparation

The dataset for this study is categorized into two types of

APK files: benign and malicious.

• Benign Apps: 1,500 APKs gathered from the period of

2015–2017.

• Malicious Apps: 1,200 APKs distributed across various

malware categories:

– Adware

– Ransomware

– SMS Malware

– Scareware

– Premium SMS Malware

All APK files were gathered from reliable sources such

as research datasets and repositories. To avoid bias in model

training and achieve accurate results, the dataset is balanced.

C. Permissions Extraction

Permissions are extracted from APK files using static anal-

ysis techniques.Each APK contains an AndroidManifest.xml

file that holds a list of requested permissions, which is critical

in the detection of malware since some permissions can be

used to gain access by malicious applications. Permissions are

crucial features for detecting malware, as certain permissions

(e.g., SEND SMS, WRITE EXTERNAL STORAGE) are of-

ten misused by malicious apps.

Permissions Overview:

• 1: Permission is requested.

• 0: Permission is not requested.

The permissions identified are 428, forming the initial

feature space for analysis.

Fig. 2. Permissions Extraction Process

D. Feature Selection Using Genetic Algorithm (GA)

Effective feature selection is a critical factor towards achiev-

ing higher model accuracy and efficiency, thereby lowering

the computational costs. The initial feature space of 428

permissions is reduced, as many permissions are redundant

or irrelevant. The study uses a Genetic Algorithm to select

the most discriminatory permissions for accurate malware

identification.

Steps in Genetic Algorithm:

1) Initialization: A randomly generated population of fea-

ture subsets is created. Each subset corresponds to a

unique combination of permissions.

2) Measuring Subset Quality: Fitness of every subset mea-

sured in terms of finding the SVM classifier’s accuracy

for classification on that particular subset through learn-

ing on it.

3) Selection: The best-performing subsets are selected for

the next generation.

4) Crossover: Selected subsets are combined to produce

new subsets, simulating biological reproduction.

5) Mutation: Random changes are introduced to subsets to

explore additional features.

6) Termination: The process continues until the optimal

feature subset is found.

E. Model Training

The refined feature set is used to train two machine learning

models: SVM and ANN.

Support Vector Machine (SVM):

http://www.ijesat.com/

International Journal of Engineering Science and Advanced Technology (IJESAT)
Vol 25 Issue 01, JAN, 2025

 ISSN No: 2250-3676 www.ijesat.com Page | 40

Fig. 3. Genetic Algorithm Process

• Purpose: Used as a baseline model for handling high-

dimensional datasets.

• Kernel: Radial Basis Function (RBF) for handling non-

linear relationships.

• Optimization: Hyperparameters (e.g., C, gamma) are

tuned using grid search.

Artificial Neural Network (ANN):

• Purpose: Models the complex interdependencies and non-

linear effects which exist in permissions data.

• Architecture:

– Input Layer: 428 nodes or the reduced subset from

GA.

– Hidden Layers: Four layers with 256, 128, 128, and

32 nodes, using ReLU activation.

– Output Layer: One node with sigmoid activation for

binary classification.

• Regularization: To avoid overfitting, we used dropout

with the dropout rate of 0.2.

• Training: Utilizes binary cross-entropy loss with Adam

optimizers.

Fig. 5. Real-Time Deployment Workflow

IV. RESULTS AND DISCUSSION

A. Performance Metrics

The SVM and ANN models’ performances are presented

through several key evaluation metrics particularly below:

• Accuracy: The general correctness of the predictions.

• Precision: The accuracy of positive predictions, calcu-

lated as true positives divided by total predicted positives.

• Recall: The proportion of correctly identified positives

among all actual positive instances.

• F1-Score: This metric provides a unified measure of

model performance by harmonizing precision and recall.

TABLE I

COMPARISON OF PERFORMANCE METRICS

Metric SVM ANN
Accuracy 91.8% 94.2%
Precision 90.7% 93.4%

Recall 89.6% 92.8%

F1-Score 90.1% 93.1%

B. Confusion Matrices

Confusion matrices break down prediction results into four

quadrants: correct identifications (TP and TN) and incorrect

identifications (FP and FN).

Fig. 4. Model Training Workflow

F. Real-Time Deployment

The trained models are deployed in a Flask-based web

application for real-time analysis of uploaded APK files.

Workflow for Real-Time System:

1) APK Upload: Users upload APK files through a web

interface.

2) Permissions Extraction: The system extracts permissions

from the APK’s manifest file.

3) Feature Encoding: Extracted permissions are encoded

into a binary vector based on the selected feature subset.

4) Model Prediction: The SVM or ANN model classifies

the APK as malicious or benign.

5) Result Display: Outputs the classification result along

with a confidence score.

Fig. 6. Confusion Matrices for SVM and ANN

C. Feature Importance

It presents the most critical permissions contributing to

malware detection and enhances insights into the decision-

making process of the model, hence model explainability.

Top permissions identified include:

• SEND SMS: Associated with SMS fraud.

• RECEIVE BOOT COMPLETED: Enables

persistence after reboot, a common malware tactic.

http://www.ijesat.com/

International Journal of Engineering Science and Advanced Technology (IJESAT)
Vol 25 Issue 01, JAN, 2025

 ISSN No: 2250-3676 www.ijesat.com Page | 41

• WRITE EXTERNAL STORAGE: Frequently

exploited for modifying or encrypting files.

Fig. 7. Feature Importance Analysis

D. Artificial Neural Network (ANN) Architecture

The ANN model is optimized with non-linear patterns in

permission data. It consists of:

• Input Layer: 428 nodes representing features of permis-

sions.

• Hidden Layers: Four layers with ReLU activation:

– Layer 1: 256 nodes

– Layer 2: 128 nodes

– Layer 3: 128 nodes

– Layer 4: 32 nodes

• Output Layer: The model utilizes a solitary node with

sigmoid activation to facilitate binary classification out-

comes.

• Dropout Regularization: Prevents overfitting by adding

dropout layers after each hidden layer.

Fig. 8. Artificial Neural Network (ANN) Architecture

E. Observations

• ANN Outperforms SVM: ANN achieves higher ac-

curacy and F1-score, demonstrating better capability to

model non-linear interactions.

• Feature Optimization: GA effectively reduces feature

dimensionality while maintaining performance.

• Real-Time Viability: Flask deployment ensures scala-

bility and usability for malware detection in practical

scenarios.

F. Final Results

The hybrid framework demonstrates superior malware de-

tection performance for Android applications with the follow-

ing outcomes:

1) ANN Outperforms SVM: The ANN demonstrates its

capability of effectively capturing non-linear interactions

with an accuracy of 94.2% and precision of 91.8%.

2) Feature Optimization via GA: GA reduces permissions

from 428 to an optimal subset, improving computational

efficiency without compromising accuracy.

3) Practical Real-Time System: The Flask-based applica-

tion allows seamless real-time APK analysis, providing

actionable insights to users.

V. CONCLUSION AND FUTURE WORK

This research proposed a hybrid machine learning frame-

work for detecting and preventing cyber fraud in Android ap-

plications. By combining Support Vector Machines (SVM) and

Artificial Neural Networks (ANN) with feature selection using

Genetic Algorithms (GA), the framework achieved high detec-

tion accuracy and efficiency. The ANN model outperformed

the SVM baseline with an accuracy of 94.2%, showcasing its

capability to model non-linear interactions in the data.

The use of GA successfully reduced feature dimensionality,

minimizing computational overhead while retaining predic-

tive performance. The real-time deployment of the frame-

work through a Flask-based web application demonstrated its

practical applicability, enabling end-users to detect malware

effectively.

Key Contributions:

• ANN Integration: Enabled the framework to model non-

linear relationships in permission data, outperforming

traditional models like SVM.

• Feature Optimization via GA: Successfully reduced the

dimensionality of the feature space without affecting ac-

curacy and with the reduction of computational overhead.

• Real-Time Deployment: Developed a user-friendly

Flask-based application ensuring practical relevance and

scalability.

Future Work:

• Integration of Dynamic Analysis: Incorporating runtime

behavioral characteristics, such as API calls and system

logs, to enhance detection capabilities.

• Ensemble Models: Exploring ensemble techniques to

combine multiple machine learning models for improved

robustness and accuracy.

• Expanded Dataset: Successfully reduced the dimension-

ality of the feature space without affecting accuracy and

with the reduction of computational overhead.

• Cross-Platform Support: Adapting the framework for

malware detection in other mobile operating systems,

including iOS.

This research concludes by introducing a highly effective,

scalable, and efficient machine learning-based solution for de-

tecting Android malware. This innovative system significantly

http://www.ijesat.com/

International Journal of Engineering Science and Advanced Technology (IJESAT)
Vol 25 Issue 01, JAN, 2025

 ISSN No: 2250-3676 www.ijesat.com Page | 42

strengthens mobile ecosystem security and sets the stage for

pioneering advancements in malware detection and prevention

technologies.

REFERENCES

[1] Zhuo Chen, L. Wu, Y. Hu, J. Cheng, Y. Hu, Y. Zhou, Z. Tang, Y. Chen,
J. Li, and K. Ren, ”Lifting the Grey Curtain: Analyzing the Ecosystem
of Android Scam Apps,” IEEE Transactions on Mobile Computing, vol.
20, no. 9, pp. 1–15, 2021.

[2] F. Chollet, Deep Learning with Python, 1st ed. Manning Publications,

2018.
[3] A. Gupta, A. Malhotra, and K. Sharma, ”Machine learning techniques

for Android malware detection based on permissions,” Journal of
Cybersecurity Applications, vol. 54, no. 1, pp. 1–15, 2020.

[4] N. Patel and M. Kumar, ”Optimizing Android malware detection using
Genetic Algorithms for feature selection,” International Journal of
Computer Applications, vol. 178, no. 23, pp. 35–42, 2019.

[5] A. Souri and H. Hosseini, ”Comprehensive analysis of machine learn-

ing approaches in malware detection,” Human-centric Computing and
Information Sciences, vol. 8, pp. 1–20, 2018.

[6] Canadian Institute for Cybersecurity, ”AndMal2019 dataset for Android
malware analysis,” [Online]. Available: https://www.unb.ca/cic/datasets/
invesandmal2019.html.

[7] H. Gascon, D. Arp, and K. Rieck, ”Using graph structures for malware
detection in Android applications,” Proceedings of the ACM Security
Conference, pp. 1–10, 2013.

[8] G. Suarez-Tangil, J. Tapiador, and P. Peris-Lopez, ”Advanced classifica-

tion techniques for Android malware families based on code structures,”
Expert Systems with Applications, vol. 41, no. 4, pp. 1104–1117, 2014.

[9] J. Sahs and L. Khan, ”Static analysis and machine learning for Android
malware detection,” Proceedings of the European Security Conference,

pp. 141–147, 2012.
[10] Y. Zhou and X. Jiang, ”A comprehensive study on Android malware

evolution and characteristics,” IEEE Symposium on Privacy and Security
Research, pp. 95–109, 2012.

[11] S. Kumar and D. S. Gill, ”Static analysis techniques for permissions-

based Android malware detection,” International Journal of Data Sci-
ence Applications, vol. 9, pp. 45–55, 2021.

[12] R. Mehta, ”Integration of machine learning in combating Android
malware,” Journal of Mobile Security Studies, vol. 10, pp. 15–25, 2020.

[13] A. Williams and T. Smith, ”Comparative analysis of static and dynamic
analysis for Android malware detection,” Cybersecurity Advances Pro-
ceedings, pp. 67–78, 2019.

[14] ”Androguard documentation,” A comprehensive guide on analysis tools

for an application developed on Android. [Online]. Available: https://
androguard.readthedocs.io/en/latest/.

[15] F. Alajmi and A. Alsulami, ”Hybrid Feature Based Approaches in Smart
Device Malware Detection for Energy Awareness through Android,”
Procedia Computer Science Journal, vol. 170, pp. 832–838, 2020.

http://www.ijesat.com/
https://www.unb.ca/cic/datasets/invesandmal2019.html
https://www.unb.ca/cic/datasets/invesandmal2019.html
https://androguard.readthedocs.io/en/latest/
https://androguard.readthedocs.io/en/latest/

	Strengths of Static Analysis:
	Limitations of Static Analysis:
	Advantages:
	Disadvantages:
	Limitations:
	Limitations: (1)
	Advantages: (1)
	Support Vector Machine (SVM):
	Artificial Neural Network (ANN):
	Key Contributions:
	Future Work:

