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Abstract—The rapid growth of Android applications has in- 
creased the risk of cyber fraud, because the malicious appli- 
cations exploit the permissions of the users for carrying out 
unauthorized activities like data theft, premium SMS fraud, and 
ransomware attacks. The traditional methods of malware detec- 
tion are signature- and heuristic-based approaches, which cannot 
cope with sophisticated attacks such as zero-day malware and 
obfuscation techniques. It will introduce a hybrid methodology, 
synergistically combining Support Vector Machines and Artificial 
Neural Networks, in order to identify malware by permission 
patterns. A Genetic Algorithm (GA) is used in the system for 
feature selection that optimizes the dataset for accuracy and 
reduces the computational overhead. 

The ANN model shows better detection performance with an 
accuracy of 94.2%, which is higher than that of SVM, which 
achieves 91.8%. The framework is further enhanced by the use 
of a real-time detection system as a Flask-based web application, 
where users can upload Android Package (APK) files for analysis. 
The application extracts permissions based on static analysis 
techniques and returns classification results as either malicious 
or benign with a confidence score. 

Some key contributions of this research include ANN integra- 
tion into the improvement of nonlinear feature modeling, GA 
usage to optimally choose features, and the creation of a real- 
time malware detection system that is scalable and user-friendly. 
The framework proposed hereby shows the power of machine 
learning in enhancing Android application-based cybersecurity 
and presents a stepping stone for further research work in 
malware detection. 

 

I. INTRODUCTION 

A. Background 

Android is the leader in the mobile landscape, with billions 

of users and devices spread worldwide. Being an open-source 

platform, it encourages an active ecosystem of developers 

and applications. Yet, such openness leaves users exposed to 

enormous security risks, mainly from malicious applications 

distributed by third-party platforms and sometimes even offi- 

cial application stores like Google Play. 

Malicious applications, or malware, exploit user permissions 

to execute unauthorized actions such as: 

• Data Theft: Accessing sensitive user data such as con- 

tacts, messages, and browsing history. 

• Premium SMS Fraud: Sending expensive SMS mes- 

sages without user consent. 

• Ransomware Attacks: Encrypting user files and de- 

manding money for decryption. 

The threat has exponentially increased cyber fraud. Global 

financial losses have crossed billions of dollars per year. With 

mobile applications now central to essential daily functions, 

including banking, communication, and healthcare, threats and 

risks amplify. 

B. Problem Statement 

The conventional approaches used for malware detection 

rely on either signature-based or heuristic-based methods. 

Signature-based methods are highly efficient for known threats 

but fail against zero-day attacks or malware employing ob- 

fuscation techniques. Heuristic-based methods are prone to 

high false-positive rates, often flagging harmless applications 

as malicious. 

Traditional approaches have limitations; hence, more adap- 

tive and scalable solutions are needed. Machine Learning (ML) 

models offer a promising alternative, but several challenges 

remain: 
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• High-Dimensional Data: Android applications request a 

large number of permissions, many of which are redun- 

dant or irrelevant for detecting malicious intent. 

• Model Scalability: The ability of models to perform well 

on large datasets and varied types of malware. 

• Real-Time Applicability: Deploying ML models in user- 

friendly, scalable systems for real-world use. 

C. Objectives 

This research is meant to be a hybrid machine. A learning 

model that detects and prevents cyber fraud in An- droid 

applications, meeting the following significant challenges: 

• Permissions-Based Detection: Using static analysis to 

extract permissions from APK files as features for ML 

models. 

• Hybrid Model Integration: Employing SVM for base- 

line performance and ANN for non-linear patterns. 

• Feature Optimization: Using GA to reduce redundant 

permissions and improve computational efficiency. 

• Real-Time Deployment: Designing a scalable, web- 

based detection system using Flask to enable real-time 

analysis. 

D. Contributions 

Key contributions of this work are: 

• ANN for Malware Detection: Integration of ANN with 

permissions-based malware detection to achieve better 

accuracy and flexibility. 

• Feature Selection Using GA: Demonstrates that GA 

can optimize large permission datasets, minimizing model 

complexity without losing performance. 

• Flask Real-Time Application: A user-friendly system 

that makes machine learning predictions actionable and 

useful for end users. 

• Benchmarking Analysis: The performance of SVM and 

ANN models is critically evaluated on Android malware 

datasets, thereby providing a comparative assessment of 

the strengths and weaknesses of both. 

E. Significance 

This paper overcomes significant challenges associated with 

detection of Android malware by presenting an integration of 

current state of the art approaches within machine learning and 

deployable solutions. The proposed system demonstrates the 

efficacy of combining static analysis with hybrid ML models 

to effectively detect and mitigate cyber threats, paving the way 

for future innovations in mobile cybersecurity. 

II. LITERATURE SURVEY 

A. Static Analysis 

Static analysis involves examining an application’s code, 

manifest files, and permissions without executing the APK. 

The reasons why this approach is used widely in malware 

detection is because of its computational efficiency, where it 

can easily handle the large datasets. Tools like Androguard 

allow for permissions extraction to identify patterns indicative 

of malicious behavior. 

Strengths of Static Analysis: 

• Efficiency: Processes a large number of applications 

quickly. 

• Scalability: Suitable for analyzing thousands of apps 

simultaneously. 

• Reproducibility: Consistent feature extraction across anal- 

yses. 

Limitations of Static Analysis: 

• Code Obfuscation: Malware developers often hide their 

code to evade detection. 

• Lack of Behavioral Insights: Does not capture runtime 

behavior like API calls or network activity. 

• Limited Zero-Day Detection: Relies heavily on prede- 

fined patterns, which may not generalize to new threats. 

B. Dynamic Analysis 

Dynamic analysis evaluates an application’s behavior during 

runtime in a sandbox environment. This approach identifies 

malicious activities such as network communication, file ac- 

cess, and API calls. 

Advantages: 

• Behavioral Insights: Captures real-time malicious activi- 

ties. 

• Zero-Day Detection: Identifies new malware based on 

suspicious behavior patterns. 

• Comprehensive: Observes all operational contexts of an 

application. 

Disadvantages: 

• Resource-Intensive: Time- and computation-dependent. 

• Scalability Issues: Not feasible for large-scale analysis. 

• Evasion Techniques: Malware can detect sandbox envi- 

ronments and modify its behavior. 

C. Machine Learning for Malware Detection 

Machine Learning offers significant advantages over tradi- 

tional methods by identifying complex data patterns. Features 

extracted from Android applications, such as permissions and 

system calls, serve as input for ML models. 

1) Support Vector Machine (SVM): The robustness of SVM 

in handling high-dimensional data has established it as a go-to 

approach for detecting malware. 

Limitations: 

• Struggles with non-linear patterns without kernel func- 

tions. 

• Computationally expensive for large datasets. 

2) Artificial Neural Networks (ANNs): ANNs have great ca- 

pabilities in modeling non-linear relationships and interactions 

between features, hence, they can handle large and complex 

datasets efficiently. 

Limitations: 

• Require hyperparameter tuning. 

• Computationally intensive during training. 
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D. Feature Selection Methods 

Feature selection enhances model performance by eliminat- 

ing irrelevant features. 

1) Genetic Algorithm (GA): This approach uses a natu- 

ral selection-based strategy to identify an optimal subset of 

features, where their relevance is assessed by a fitness score 

reflecting the performance of the model. 

Advantages: 

• Handles high-dimensional feature spaces. 

• Captures interactions between permissions. 

III. PROPOSED METHODOLOGY 

A. Framework Overview 

This section outlines the comprehensive methodology 

adopted for the detection and prevention of cyber fraud 

targeting Android applications. The proposed framework en- 

compasses static analysis, feature selection using Genetic 

Algorithm (GA), hybrid machine learning models, and real- 

time deployment. Each phase is explained using flowcharts. 

1) Dataset Preparation: Collect and preprocess benign and 

malicious APK files. 

2) Permissions Extraction: Extract static features (permis- 

sions) from APKs through manifest file analysis. 

3) Feature Selection: Use GA for the optimization of the 

permission set by removing irrelevant and redundant 

features. 

4) Model Training: SVM and ANN models are to be trained 

using the optimized feature set. 

5) Real-Time Deployment: A Flask-based web application 

is to be implemented for real-time malware detection. 

 

Fig. 1. Overall Framework 

 

 

B. Dataset Preparation 

The dataset for this study is categorized into two types of 

APK files: benign and malicious. 

• Benign Apps: 1,500 APKs gathered from the period of 

2015–2017. 

• Malicious Apps: 1,200 APKs distributed across various 

malware categories: 

– Adware 

– Ransomware 

– SMS Malware 

– Scareware 

– Premium SMS Malware 

All APK files were gathered from reliable sources such 

as research datasets and repositories. To avoid bias in model 

training and achieve accurate results, the dataset is balanced. 

C. Permissions Extraction 

Permissions are extracted from APK files using static anal- 

ysis techniques.Each APK contains an AndroidManifest.xml 

file that holds a list of requested permissions, which is critical 

in the detection of malware since some permissions can be 

used to gain access by malicious applications. Permissions are 

crucial features for detecting malware, as certain permissions 

(e.g., SEND SMS, WRITE EXTERNAL STORAGE) are of- 

ten misused by malicious apps. 

Permissions Overview: 

• 1: Permission is requested. 

• 0: Permission is not requested. 

The permissions identified are 428, forming the initial 

feature space for analysis. 

 

Fig. 2. Permissions Extraction Process 

 

 

D. Feature Selection Using Genetic Algorithm (GA) 

Effective feature selection is a critical factor towards achiev- 

ing higher model accuracy and efficiency, thereby lowering 

the computational costs. The initial feature space of 428 

permissions is reduced, as many permissions are redundant 

or irrelevant. The study uses a Genetic Algorithm to select 

the most discriminatory permissions for accurate malware 

identification. 

Steps in Genetic Algorithm: 

1) Initialization: A randomly generated population of fea- 

ture subsets is created. Each subset corresponds to a 

unique combination of permissions. 

2) Measuring Subset Quality: Fitness of every subset mea- 

sured in terms of finding the SVM classifier’s accuracy 

for classification on that particular subset through learn- 

ing on it. 

3) Selection: The best-performing subsets are selected for 

the next generation. 

4) Crossover: Selected subsets are combined to produce 

new subsets, simulating biological reproduction. 

5) Mutation: Random changes are introduced to subsets to 

explore additional features. 

6) Termination: The process continues until the optimal 

feature subset is found. 

E. Model Training 

The refined feature set is used to train two machine learning 

models: SVM and ANN. 

Support Vector Machine (SVM): 
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Fig. 3. Genetic Algorithm Process 

 

 

• Purpose: Used as a baseline model for handling high- 

dimensional datasets. 

• Kernel: Radial Basis Function (RBF) for handling non- 

linear relationships. 

• Optimization: Hyperparameters (e.g., C, gamma) are 

tuned using grid search. 

Artificial Neural Network (ANN): 

• Purpose: Models the complex interdependencies and non- 

linear effects which exist in permissions data. 

• Architecture: 

– Input Layer: 428 nodes or the reduced subset from 

GA. 

– Hidden Layers: Four layers with 256, 128, 128, and 

32 nodes, using ReLU activation. 

– Output Layer: One node with sigmoid activation for 

binary classification. 

• Regularization: To avoid overfitting, we used dropout 

with the dropout rate of 0.2. 

• Training: Utilizes binary cross-entropy loss with Adam 

optimizers. 

Fig. 5. Real-Time Deployment Workflow 

 

 

IV. RESULTS AND DISCUSSION 

A. Performance Metrics 

The SVM and ANN models’ performances are presented 

through several key evaluation metrics particularly below: 

• Accuracy: The general correctness of the predictions. 

• Precision: The accuracy of positive predictions, calcu- 

lated as true positives divided by total predicted positives. 

• Recall: The proportion of correctly identified positives 

among all actual positive instances. 

• F1-Score: This metric provides a unified measure of 

model performance by harmonizing precision and recall. 

 
TABLE I 

COMPARISON OF PERFORMANCE METRICS 
 

Metric SVM ANN 
Accuracy 91.8% 94.2% 
Precision 90.7% 93.4% 

Recall 89.6% 92.8% 

F1-Score 90.1% 93.1% 
 

 

B. Confusion Matrices 

Confusion matrices break down prediction results into four 

quadrants: correct identifications (TP and TN) and incorrect 

identifications (FP and FN). 

 

Fig. 4. Model Training Workflow 

 

 

F. Real-Time Deployment 

The trained models are deployed in a Flask-based web 

application for real-time analysis of uploaded APK files. 

Workflow for Real-Time System: 

1) APK Upload: Users upload APK files through a web 

interface. 

2) Permissions Extraction: The system extracts permissions 

from the APK’s manifest file. 

3) Feature Encoding: Extracted permissions are encoded 

into a binary vector based on the selected feature subset. 

4) Model Prediction: The SVM or ANN model classifies 

the APK as malicious or benign. 

5) Result Display: Outputs the classification result along 

with a confidence score. 

 

 

Fig. 6. Confusion Matrices for SVM and ANN 

 

C. Feature Importance 

It presents the most critical permissions contributing to 

malware detection and enhances insights into the decision- 

making process of the model, hence model explainability. 

Top permissions identified include: 

• SEND SMS: Associated with SMS fraud. 

• RECEIVE BOOT COMPLETED: Enables 

persistence after reboot, a common malware tactic. 
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• WRITE EXTERNAL STORAGE: Frequently 

exploited for modifying or encrypting files. 

 

 
Fig. 7. Feature Importance Analysis 

 

 

D. Artificial Neural Network (ANN) Architecture 

The ANN model is optimized with non-linear patterns in 

permission data. It consists of: 

• Input Layer: 428 nodes representing features of permis- 

sions. 

• Hidden Layers: Four layers with ReLU activation: 

– Layer 1: 256 nodes 

– Layer 2: 128 nodes 

– Layer 3: 128 nodes 

– Layer 4: 32 nodes 

• Output Layer: The model utilizes a solitary node with 

sigmoid activation to facilitate binary classification out- 

comes. 

• Dropout Regularization: Prevents overfitting by adding 

dropout layers after each hidden layer. 

 

 
Fig. 8. Artificial Neural Network (ANN) Architecture 

 

 

E. Observations 

• ANN Outperforms SVM: ANN achieves higher ac- 

curacy and F1-score, demonstrating better capability to 

model non-linear interactions. 

• Feature Optimization: GA effectively reduces feature 

dimensionality while maintaining performance. 

• Real-Time Viability: Flask deployment ensures scala- 

bility and usability for malware detection in practical 

scenarios. 

F. Final Results 

The hybrid framework demonstrates superior malware de- 

tection performance for Android applications with the follow- 

ing outcomes: 

1) ANN Outperforms SVM: The ANN demonstrates its 

capability of effectively capturing non-linear interactions 

with an accuracy of 94.2% and precision of 91.8%. 

2) Feature Optimization via GA: GA reduces permissions 

from 428 to an optimal subset, improving computational 

efficiency without compromising accuracy. 

3) Practical Real-Time System: The Flask-based applica- 

tion allows seamless real-time APK analysis, providing 

actionable insights to users. 

V. CONCLUSION AND FUTURE WORK 

This research proposed a hybrid machine learning frame- 

work for detecting and preventing cyber fraud in Android ap- 

plications. By combining Support Vector Machines (SVM) and 

Artificial Neural Networks (ANN) with feature selection using 

Genetic Algorithms (GA), the framework achieved high detec- 

tion accuracy and efficiency. The ANN model outperformed 

the SVM baseline with an accuracy of 94.2%, showcasing its 

capability to model non-linear interactions in the data. 

The use of GA successfully reduced feature dimensionality, 

minimizing computational overhead while retaining predic- 

tive performance. The real-time deployment of the frame- 

work through a Flask-based web application demonstrated its 

practical applicability, enabling end-users to detect malware 

effectively. 

Key Contributions: 

• ANN Integration: Enabled the framework to model non- 

linear relationships in permission data, outperforming 

traditional models like SVM. 

• Feature Optimization via GA: Successfully reduced the 

dimensionality of the feature space without affecting ac- 

curacy and with the reduction of computational overhead. 

• Real-Time Deployment: Developed a user-friendly 

Flask-based application ensuring practical relevance and 

scalability. 

Future Work: 

• Integration of Dynamic Analysis: Incorporating runtime 

behavioral characteristics, such as API calls and system 

logs, to enhance detection capabilities. 

• Ensemble Models: Exploring ensemble techniques to 

combine multiple machine learning models for improved 

robustness and accuracy. 

• Expanded Dataset: Successfully reduced the dimension- 

ality of the feature space without affecting accuracy and 

with the reduction of computational overhead. 

• Cross-Platform Support: Adapting the framework for 

malware detection in other mobile operating systems, 

including iOS. 

This research concludes by introducing a highly effective, 

scalable, and efficient machine learning-based solution for de- 

tecting Android malware. This innovative system significantly 
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strengthens mobile ecosystem security and sets the stage for 

pioneering advancements in malware detection and prevention 

technologies. 
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