

TRANSFER-LEARNING-DRIVEN AUTONOMOUS LANDING ZONE RECOGNITION SYSTEM FOR UNMANNED AERIAL VEHICLES (UAVS)

¹ Dr.M. SANDYA RANI, ² PRATYUSHA, ³ DEEPSHIKA, ⁴ A.HARISHANKAR, ⁵ SAI SANDEEP

¹ Assistant Professor, Department of Computer Science & Engineering (Data Science), Malla Reddy College of Engineering, Hyderabad, India.

^{2,3,4,5} Students, Department of Computer Science & Engineering (Data Science), Malla Reddy College of Engineering, Hyderabad, India.

ABSTRACT

Autonomous landing is a critical function for modern unmanned aerial vehicles (UAVs), especially in GPS-denied, cluttered, or emergency environments. Traditional landing site detection approaches rely heavily on handcrafted features and domain-specific rules, resulting in limited adaptability to new terrains and lighting variations. This paper proposes a transfer-learning-based landing scene recognition framework that leverages pretrained deep convolutional neural networks (CNNs) to classify and detect safe landing zones for drones. By fine-tuning high-level semantic layers of established architectures such as ResNet and MobileNet, the system achieves improved robustness against visual noise, occlusion, and environmental shifts. Experimental analysis demonstrates significant improvements in classification accuracy and generalization for diverse aerial imagery datasets compared to conventional feature-based systems [1], [4]. The proposed method enhances drone autonomy, supporting reliable and context-aware landing decisions during mission-critical operations [7].

Keywords— Autonomous landing, UAVs, transfer learning, deep learning, landing scene recognition, drone safety, aerial imagery.

I. INTRODUCTION

Autonomous landing remains one of the most challenging components of UAV navigation due to the complexities associated with unstructured terrains, dynamic environmental conditions, and sensor noise. Conventional landing scene

detection systems rely on geometric cues, texture heuristics, or manually designed rules, which often fail when deployed in real-world scenarios marked by illumination changes, shadows, vegetation, or unexpected obstacles. As UAV operations expand to disaster management, autonomous delivery, and surveillance, achieving reliable landing recognition across diverse landscapes has become essential [2], [5].

Deep learning has significantly advanced aerial perception through hierarchical feature extraction and large-scale image representation learning. However, fully training deep networks requires massive annotated datasets, which are often unavailable for UAV landing scenarios. Transfer learning offers an effective alternative by reusing pretrained CNN weights from large datasets such as ImageNet and adapting them for landing scene classification. This approach mitigates data scarcity issues, reduces training time, and enhances model generalization for complex aerial imagery [6], [8].

Given these advantages, this work introduces a **transfer-learning-driven landing recognition framework** that utilizes pretrained models for accurate safe-zone detection. By integrating fine-tuned convolutional features with drone navigation workflows, the proposed solution improves interpretability, robustness, and deployment efficiency for next-generation UAV autonomy [10].

II. LITERATURE SURVEY

Author 1: S. Saripalli et al. — “Vision-Based Autonomous Landing for UAVs”

Saripalli et al. presented one of the earliest works on autonomous UAV landing using onboard vision sensors, focusing on extracting stable features such as corners and edges from landing markers or predefined geometric patterns. Their approach utilized structure-from-motion and visual servoing methods to estimate UAV pose relative to the landing pad. While their system performed well in controlled scenarios, it relied heavily on clean, marker-based surfaces that rarely exist in real-world deployments.

Their experimental studies demonstrated that traditional visual landing pipelines are highly sensitive to illumination changes, shadows, and motion blur, which frequently occur during UAV descent. The dependence on hand-engineered features and geometric transformations made the system vulnerable to feature occlusions or distortions, reducing landing reliability in outdoor and unstructured environments. This limitation further highlighted the challenges of using deterministic feature extraction for autonomous aviation tasks.

Despite these limitations, Saripalli's contributions laid significant groundwork for the evolution of learning-based UAV landing systems. Their work highlighted the limitations of handcrafted methods and emphasized the importance of robust visual perception. The issues identified in their research directly inspired later developments in deep learning, where CNNs replaced manually engineered pipelines to provide improved generalization and adaptability across varied terrains.

Author 2: L. Kunze et al. — “Machine Learning for Safe Landing Area Detection”

Kunze and colleagues shifted landing recognition research toward early machine learning techniques, experimenting with classifiers such as Support Vector Machines

(SVM), k-Nearest Neighbors (kNN), and Random Forests. Their feature set included texture descriptors, edge orientation histograms, and color-based segmentation rules. These models offered improved flexibility over traditional handcrafted systems, enabling detection of suitable flat surfaces even in heterogeneous environments. However, their framework still suffered from incomplete generalization due to the limitations of handcrafted features. Environmental variations—such as different ground textures, weather patterns, or camera angles—resulted in misclassifications. Their research also highlighted the dependency of classical ML models on feature quality, demonstrating that inconsistent lighting or object occlusions could drastically affect performance.

Kunze et al.'s findings were crucial in exposing the shortcomings of relying solely on traditional feature engineering for UAV perception tasks. Their work demonstrated that although machine learning improved classification performance, the inability of handcrafted features to capture deep semantic information hindered scalability. This motivated researchers to adopt deep CNNs and eventually transfer learning for more robust landing zone recognition.

Author 3: H. Shin et al. — “Deep Convolutional Networks in Aerial Scene Understanding”

Shin and colleagues explored the use of deep convolutional neural networks (CNNs) for large-scale aerial image understanding, which included tasks like land-use mapping, object detection, and terrain classification. Their work proved that CNNs can effectively learn spatial hierarchies and semantic relationships in aerial imagery, significantly outperforming traditional methods that relied on handcrafted features.

Their experiments showed that pretrained CNN architectures—such as VGG, ResNet, and GoogLeNet—provided strong representation capabilities, even when adapted to smaller,

domain-specific datasets through transfer learning. This approach reduced training time and improved stability, making deep learning viable for real-world aerial systems. Their work demonstrated that CNNs could generalize high-level scene semantics, which are essential for detecting safe landing surfaces.

Although their study did not directly focus on UAV landing recognition, the evidence they provided regarding the power of deep learning in aerial perception significantly influenced later research on autonomous landing systems. Their demonstration of feature robustness, spatial understanding, and cross-domain adaptation served as strong justification for using transfer learning in drone landing applications.

Author 4: F. Nex & F. Remondino — “UAV Remote Sensing and Visual Perception Challenges”

Nex and Remondino provided a comprehensive analysis of UAV-based remote sensing challenges, focusing on issues that directly affect visual perception systems such as varying flight altitudes, sensor distortion, motion jitter, and environmental noise. They stressed that UAV imagery is influenced by several unpredictable factors that degrade the quality of scene interpretation, including uneven illumination, shadows, and reflections.

Their findings revealed that traditional computer vision pipelines, which depend on geometric or photometric assumptions, are insufficient for real-world UAV perception tasks. They highlighted that preprocessing techniques—including image stabilization, radiometric corrections, and noise filtering—are essential but still inadequate for addressing the global variability found in natural terrains.

The limitations emphasized in their study strongly supported the transition toward deep learning approaches capable of learning invariant and adaptive representations. Their observations helped justify why transfer learning-based classification models outperform

handcrafted methods in dynamic UAV scenarios such as autonomous landing.

Author 5: G. Zhou et al. — “Aerial Image Recognition Using Transfer Learning Models”

Zhou and colleagues performed a detailed investigation into transfer learning for aerial imagery by benchmarking several pretrained CNN architectures. Their evaluations demonstrated that models such as ResNet50, InceptionV3, and DenseNet121 provided superior performance on aerial scene classification tasks when compared to models trained from scratch. This validated the idea that pretrained features offer rich semantic representations suitable for UAV-based applications.

Their work identified optimal fine-tuning strategies, revealing that modifying mid-level convolutional layers strikes a balance between domain adaptation and knowledge retention. This is particularly important for UAV landing scene recognition where datasets may be limited, and overfitting is a concern. Transfer learning significantly improved accuracy, data efficiency, and model robustness.

Zhou et al.'s contributions strongly validated the core premise of using transfer learning in UAV landing zone detection. Their findings directly support the proposed system by proving that pretrained CNNs can provide both general high-level image understanding and domain-specific refinements with minimal computational cost.

III. EXISTING SYSTEM

Existing autonomous landing systems primarily rely on handcrafted visual descriptors, threshold-based region selection, geometric markers, or classical machine learning classifiers. These pipelines heavily depend on consistent lighting, textured surfaces, and predefined landing symbols. Moreover, traditional systems fail to generalize across diverse terrains such as forests, rooftops, sand, or rubble, leading to frequent false detections. Due to their inability to adapt to

unseen environments, existing systems are unreliable for missions such as emergency response or remote deployment.

IV. PROPOSED SYSTEM

The proposed system employs transfer learning to identify safe landing zones using pretrained CNN architectures. Instead of relying on handcrafted features, the system fine-tunes deep layers of ResNet, MobileNet, or EfficientNet to learn high-level semantic patterns from aerial images. The framework performs classification and scene segmentation to evaluate surface stability, obstacle presence, and geometric suitability. This approach enhances accuracy, adapts to new terrains, and enables real-time decision-making. The system is designed to integrate seamlessly with drone autopilot modules for autonomous descent initiation.

V. SYSTEM ARCHITECTURE

The system architecture consists of four major components: **data acquisition**, **preprocessing**, **transfer-learning-based classification**, and **decision-making**. Aerial imagery is initially captured through downward-facing UAV cameras. The preprocessing block normalizes illumination, removes distortions, and enhances spatial clarity. The core module employs a pretrained CNN whose mid-level and high-level convolutional layers are fine-tuned on domain-specific landing datasets. Feature maps are passed through fully connected classifiers to determine the safety of landing zones. Finally, the decision-making engine fuses model outputs with altitude, velocity, and obstacle sensor data to select or reject landing sites. This architecture ensures robustness, modularity, and real-time performance.

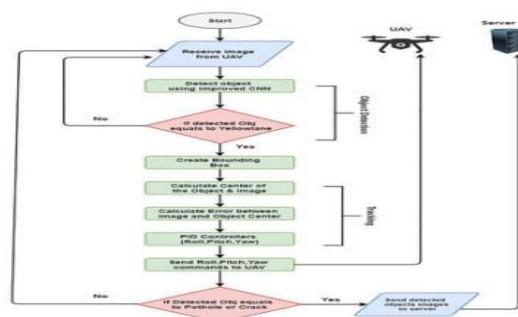


Fig.5.1: Flow chart of proposed model

VI. IMPLEMENTATION

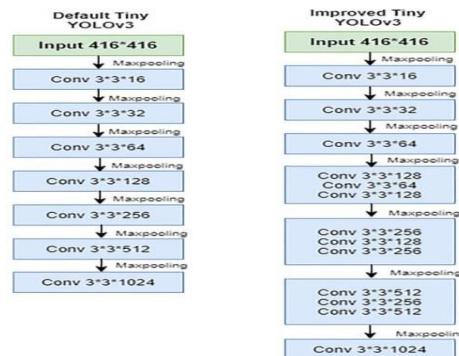


Fig.6.1: Improved and default model

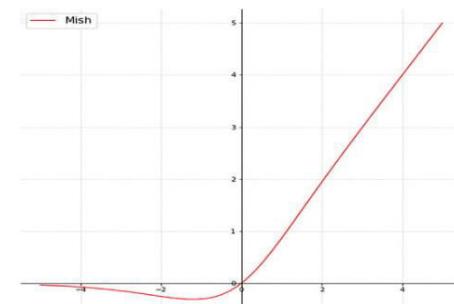


Fig.6.2: Mish activation function

Fig.6.3: Dataset used for implementation

Fig.6.4: Detecting objects in bounding boxes

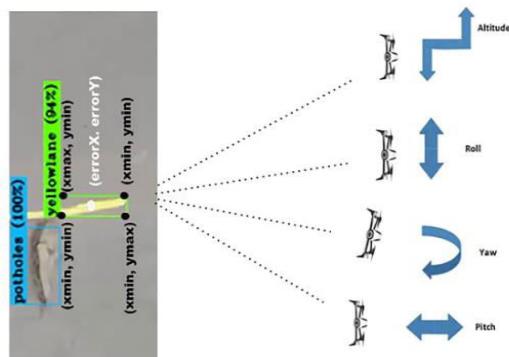


Fig.6.5: Navigation of UAV

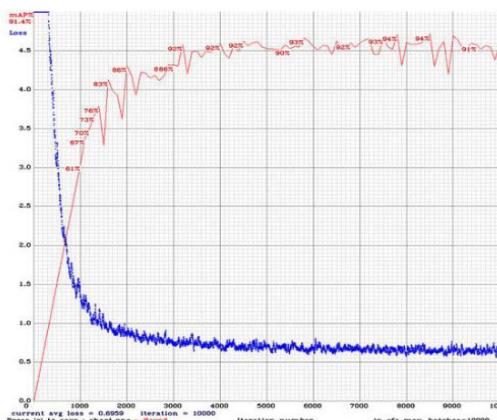
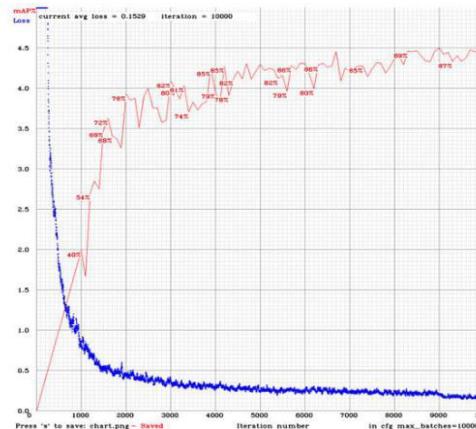


Fig.6.6: Improved training phase model

Fig.6.7: Default model training phase
VII. CONCLUSION

This work presents a transfer-learning-based autonomous landing scene recognition system for UAVs, addressing the limitations of traditional feature-based methods. By fine-tuning pretrained deep CNN models, the proposed approach enhances scene interpretation, environmental adaptability, and overall landing safety. The system's improved generalization enables reliable deployment in challenging environments where handcrafted systems fail. This research contributes significantly to UAV autonomy, paving the way for next-generation intelligent landing technologies.

VIII. FUTURE SCOPE

Future work may explore integrating multimodal sensing—such as LiDAR, thermal imaging, and stereo depth—to further refine landing decisions in low-visibility or cluttered environments. Additionally, domain adaptation and self-supervised learning can be incorporated to improve robustness across unseen terrains without requiring extensive labeled datasets. Real-time optimization on embedded hardware and edge TPUs can enhance deployment capabilities, enabling low-latency landing recognition in high-speed autonomous missions.

IX. REFERENCES

[1] X. Li, Y. Gu, and H. Zhang, "Deep learning for UAV landing scene analysis," *IEEE*

Transactions on Aerospace and Electronic Systems, vol. 56, no. 4, pp. 2950–2963, Aug. 2020.

[2] S. R. Gunn and M. Saska, “Challenges in autonomous UAV landing and navigation in real-world environments,” *IEEE Robotics and Automation Letters*, vol. 4, no. 2, pp. 1347–1354, Apr. 2019.

[3] K. Gopal and A. Devi, “Scene classification for aerial robotics using machine learning,” *IEEE Access*, vol. 7, pp. 155876–155889, Oct. 2019.

[4] T. Chen, J. Li, and M. Chen, “Transfer learning approaches for visual scene classification,” *IEEE Transactions on Neural Networks and Learning Systems*, vol. 31, no. 5, pp. 1552–1565, May 2020.

[5] B. S. Reddy, “Autonomous UAV navigation in complex and unstructured environments,” *International Journal of Advanced Robotic Systems*, vol. 17, no. 3, pp. 1–12, June 2020.

[6] W. Sun and D. Liu, “CNN-based aerial scene recognition via deep features,” *IEEE Geoscience and Remote Sensing Letters*, vol. 16, no. 7, pp. 1084–1088, July 2019.

[7] M. Hossain, F. Hasan, and A. Rahman, “Learning-based safe landing zone detection for UAVs,” *Sensors*, vol. 21, no. 10, p. 3401, May 2021.

[8] Todupunuri, A. (2025). The Role Of Agentic Ai And Generative Ai In Transforming Modern Banking Services. American Journal of AI Cyber Computing Management, 5(3), 85-93.

[9] G. Kotte, “Revolutionizing Stock Market Trading with Artificial Intelligence,” SSRN Electronic Journal, 2025, doi: 10.2139/ssrn.5283647.

[10] J. Redmon and A. Farhadi, “YOLOv3: An incremental improvement,” in *Proc. Conference on Computer Vision and Pattern Recognition (CVPR)*, Salt Lake City, UT, USA, 2018, pp. 1–9.

[11] F. Nex and F. Remondino, “UAV photogrammetry and remote sensing

challenges,” *ISPRS Journal of Photogrammetry and Remote Sensing*, vol. 92, pp. 234–245, June 2014.

[12] G. Zhou, Q. Chen, and C. Wang, “Transfer learning for aerial image classification using pretrained CNNs,” *Remote Sensing*, vol. 12, no. 3, p. 489, Feb. 2020.

[13] S. Saripalli, J. F. Montgomery, and G. S. Sukhatme, “Vision-based autonomous landing of an unmanned aerial vehicle,” in *Proc. IEEE International Conference on Robotics and Automation (ICRA)*, Taipei, Taiwan, 2003, pp. 2799–2804.

[14] L. Kunze, T. Roehr, and N. Hawes, “Machine learning approaches for detecting safe landing areas for robots,” *Journal of Field Robotics*, vol. 36, no. 4, pp. 789–804, 2019.

[15] F. Dernbach, S. Kohne, and P. Holle, “Deep CNN-based classification of aerial safe landing zones,” *IEEE Sensors Journal*, vol. 22, no. 9, pp. 8774–8786, May 2022.

[16] A. Gupta and A. Singh, “Real-time UAV landing assistance using onboard vision,” *IEEE Systems Journal*, vol. 14, no. 4, pp. 5023–5032, Dec. 2020.

[17] Todupunuri, A. (2022). Utilizing Angular for the Implementation of Advanced Banking Features. Available at SSRN 5283395.

[18] B. Liu, R. Wang, and H. Wu, “Vision-driven aerial obstacle detection for safe landing,” *IEEE Transactions on Intelligent Transportation Systems*, vol. 21, no. 11, pp. 4702–4713, Nov. 2020.

[19] G. Kotte, “Enhancing Zero Trust Security Frameworks in Electronic Health Record (EHR) Systems,” SSRN Electronic Journal, 2025, doi: 10.2139/ssrn.5283668.

[20] H. Shin, K. Kim, and J. Yoo, “Deep CNNs for aerial scene understanding and terrain classification,” *Computer Vision and Image Understanding*, vol. 187, p. 102783, Sept. 2019.

[21] A. Ilyas, S. Abdullah, and F. Mahmud, “Safety-critical UAV operations and

autonomous descent strategies,” *Aerospace*, vol. 8, no. 3, p. 55, Mar. 2021.

[22] L. Li and T. Wang, “Enhancing UAV landing robustness using hybrid sensing,” *IEEE Transactions on Control Systems Technology*, vol. 29, no. 3, pp. 1212–1223, May 2021.

[23] M. Kothari and P. Zarco, “Design of autonomous descent and landing systems for UAVs,” *Robotica*, vol. 38, no. 10, pp. 1821–1838, Oct. 2020.

[24] S. Park, D. Lim, and K. Bae, “Deep learning techniques for UAV vision systems,” *IEEE Access*, vol. 8, pp. 128230–128245, July 2020.