
Detecting Malware on Android Using Machine Learning

Techniques

P. Siva Srinivasa Rao1,

PG Scholar

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING

GVR&S COLLEGE OF ENGINEERING AND TECHNOLOGY,

Budampadu-522017, Guntur (Dt), A.P., India.

Thrishiva123@gmail.com1

Dr. SK.Sajeedha Parveen2

Professor

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING

GVR&S COLLEGE OF ENGINEERING AND TECHNOLOGY,

Budampadu-522017, Guntur (Dt), A.P., India

 shaiksajeedaparveen@gmail.com2

ABSTRACT:

The Android platform became one of the most

vulnerable targets for cyberattacks in recent times

due to a rapid surge in malware embedded apps.

Researchers have investigated various machine

learning techniques for Android malware detection

but most of these techniques are inefficient against

the novel malware. The various problems like code

obfuscation, the requirement of device root

privileges, simulated and small size datasets pose

serious flaws to the existing solutions. This work

evaluates several machine learning models for

mitigating these issues using low privileged

monitorable features sampled in the SherLock

dataset. The findings of this research conclude that

the XGBoost clas- sifier is the most accurate in

detecting the malware compared to other classifiers

with 93% overall values of precision, recall, and

accuracy. In terms of FNR values, which sig- nify the

undetected malware, the XGBoost classifier also

performs better than the other algorithms with values

of 7.0%.

Keywords: Android Malware Detection, Machine

Learning, XGBoost Classifier, SherLock Dataset,

Code Obfuscation, Low-Privileged Features,

Cybersecurity, False Negative Rate (FNR), Malware

Embedded Apps, Android Vulnerabilities, Precision,

Recall, Accuracy, Root Privileges, Novel Malware

1. INTRODUCTION

In recent times, smartphones turn out to be an

indispensable part of human life as most of the day to

day life computation is shifting towards smartphones.

The smartphones are equipped with a variety of

sensors to provide several applications to the end-

users and generates a huge amount of sensitive and

confidential data. Android OS, due to its opensource

distribution, emerged as blazing popularity for

smartphones in the last few years. This predominant

operating system platform has established itself not

only in the mobile world but also in the Internet of

Things devices and turns out to be the most common

operating system for smartphones with a market

share of 86.1% by the end of 2019 [1].

Malware can also attack an android device by

performing a privilege escalation attack [2] by which

an unauthorized person can gain control of the phone

via the backdoor. Furthermore, malware can perform

other attacks like phishing and ransomware as well as

it can affect the device by draining the battery and

infecting the network interface card. So, there is a

requirement of efficient security mechanisms for

malware detection in Android devices.

Google play store follows a very simple security

mechanism known as Bouncer [3]. It is a third-party

program that continuously scans the google play store

repository for identifying malicious apps. However,

this may reduce the number of uploaded malicious

apps but still, it fails to detect most of the vulnerable

International Journal of Engineering Science and Advanced Technology (IJESAT) Vol 25 Issue 06, JUNE, 2025

ISSN No: 2250-3676 www.ijesat.com Page 51 of 56

mailto:Thrishiva123@gmail.com1
mailto:shaiksajeedaparveen@gmail.com2

apps uploaded on the play store. The other security

mechanisms such as the Android permission system,

integrated with the Android OS, control the

permission to access the resources by giving the

individual permissions to apps statically at the time

of installation. But the issue with the Android

permission system is that almost all end-users blindly

grant permission to apps during installation.

Botha et al. [4] have applied the security mechanism

used for PC to smartphones and claim that

smartphones fail to perform well with these methods

due to extensive resource utilization. Hence there is

an increasing need for sophisticated, advanced,

robust, and automated malware detection systems to

detect malicious applications. Machine learning

methods are very recent and well-established

techniques for malware detection

on the Android platform. Researchers have

extensively classified the study of Android malware

detection using machine learning techniques into two

ways, static and dynamic analysis based on the

features set acquired from the apps [5].

2. Literature survey

2.1 Android Platform Architecture

Android is an open-source software platform based

on Linux, built for a wide range of devices and form

factors. The key components of the Android platform

is shown in be- low diagram. In this figure, violets

items are modules written in native machine code

(C/C++), while green items are modules interpreted

and executed by the Dalvik Virtual Machine(DVM).

The bottom red layer contains the components of the

Linux kernel and executes in kernel space. Using a

bottom-up approach, we briefly address the different

abstraction layers in the following subsections.

2.2 The Linux Kernel

The Android platform is based on the Linux kernel.

The Android Runtime (ART), for example, depends

on the Linux kernel for basic functionalities,

including multi-threading and low-level memory

management. The Linux kernel helps Android to take

advantage of core security features and encourages

handset makers to build hardware drivers for well-

known kernel. Android uses a sophisticated version

with some special additions to the Linux Kernel.

These includes wake-locks, a memory protection

scheme that is more proactive in saving memory, the

Binder IPC driver, and other functionality that are

essential for a mobile embedded platform such as

Android.

2.3 Native C/C++ Libraries

Many core components and services of the Android

system, such as ART and HAL, are developed from

native code, which require native libraries written in

C and C++. Mostly these are external libraries with

only slight improvements such as OpenSSL, WebKit

and bzip2. The Android platform provides Java

framework APIs to expose applications to some of

those native libraries’ functionality. You can use the

Android NDK to use any of these native application

libraries directly from your native code if you are

creating an app that requires C or C++ code.

2.4 Android Application

Mobile apps are delivered as APK files. APK files

are signed ZIP files that comprises the byte code of

the application along with all its data, tools, third-

party libraries and a manifest file describing the

detail functionality of the application. Permissions for

files in an application are then registered so that only

the application itself can able to access them. In

addition, every program is given its own Virtual

Machine when it is started which ensures code is

segregated from other applications

Fig 1: K-nearest neighbour

K-nearest neighbour is a distance based classification

technique in which new data points are classified by

looking at their k- number of neighbours. The new

data point is being associated to the class which has

majority among the entire k neighbours. Thus

decision boundary of majority class is improved by

some margin. This process continues till all the points

are being classified. KNN has been used in statistical

estimation and pattern recognition already in the

beginning of 1970’s as a non-parametric technique.

3. Proposed System
3.1 System Analysis:

The literature contains various methods which adapt

different strategies to detect malware applications.

Basically most of the Android malware detection

work can be grouped in two categories, static analysis

and dynamic analysis. Both approaches have their

advantages and disadvantages as Static analysis is

unrealistic and vulnerable to obfuscation where as

dynamic analysis is generally faster as compared to

static analysis and less resource intensive but requires

change in kernel of the operating system. Some other

methods combine static and dynamic analysis, known

International Journal of Engineering Science and Advanced Technology (IJESAT) Vol 25 Issue 06, JUNE, 2025

ISSN No: 2250-3676 www.ijesat.com Page 52 of 56

as hybrid analysis, to improve detection accuracy.

Along with this, there are some new approaches to

malware detection using device-based low-

monitorable features. Below, we give a quick review

of existing approaches that belong to these

categories. In this segment, we also address the work

done using the identification of behavioral and

signature based malware.

Chin et al. proposed a method called Comdroid

which is used for detecting the malicious application

using communication-based vulnerabilities in

Android. In addition to an open API, the Android

operating system also features a rich inter application

message passing system for transferring messages

between applications. This promotes cooperation

between applications and reduces the burden on

developers by encouraging reuse of the components.

Unfortunately, the passing of message is also the

subject of an application attack. So Comdroid utilize

this concept and analyze the interaction between

Android application and determine Security threats in

application modules.

Fig 2: Architecture Diagram

The fig 2 represents a comprehensive machine

learning workflow pipeline designed to ensure robust

model development and evaluation. The process

begins with loading CSV data, followed by data

preprocessing and splitting into training and test sets.

Feature engineering is then applied to enhance the

dataset, after which the SMOTE (Synthetic Minority

Over-sampling Technique) method is used to balance

class distributions in cases of imbalanced datasets.

Next, model selection is carried out through grid

search, which systematically tests different

combinations of hyperparameters. Hyperparameter

tuning and cross-validation, particularly 10-fold

cross-validation, are employed to fine-tune the model

and ensure it performs well on unseen data. Once the

optimal model is selected, it is trained on the full

training dataset. The model is then evaluated using

metrics such as RMSE (Root Mean Square Error),

MAE (Mean Absolute Error), and correlation scores.

After evaluation, the model makes predictions, which

can be saved or reused later. The results are

visualized using plots, and a final analysis is

presented using swing-out plots to display key

findings. The entire workflow integrates key

components such as linear regression (including

ordinal regression), SMOTE filtering for class

balance, and advanced evaluation techniques, making

it a reliable and efficient end-to-end machine learning

process.

3.2 Evaluation Metrix:z

The recall or true positive rate (TPR) is defined as

Recall=
𝑇𝑃𝑇𝑃+𝐹 (1)

The accuracy is defined as

Accuracy= (2)

The F1-score is defined as

 (3)

3.3 Dataset:

The dataset used in this work is provided by the

University of Ben-Gurion, called SherLock dataset.

This significant smartphone data is generated from a

continuing long- term data collection experiment by

providing Samsung Galaxy S5 to 50 volunteers. The

two Smartphone agents are involved in this data

collection experiment: SherLock and Moriarty.

Sherlock: SherLock is a data collection agent which

captures various device metrics (such as battery usage,

CPU usage and memory usage etc.) from a wide range

of sensors and applications at a high sampling rate.

Moriarty: Moriarty perpetrates varied cyber attacks

on the user and records its activities in order to

provide labels to SherLock dataset.

The primary objective of the dataset is to help safety

professionals and research groups to develop a

innovative methods to detect malicious behavior in

smartphones implicitly in those devices where sensor

data can be accessed without the privileges of the

superuser(root).

FNFPTNTP

TNTP

+++
+

International Journal of Engineering Science and Advanced Technology (IJESAT) Vol 25 Issue 06, JUNE, 2025

ISSN No: 2250-3676 www.ijesat.com Page 53 of 56

The Sherlock dataset is organized into form of a

probe. A probe is a data table in which multiple

sensors sharing the same interval are grouped to

collect the data. The dataset is decomposed into 15

different probes. Of the 15 probes, 8 are PULL

probes, which captures sensor data in fixed time

interval and 7 are PUSH probes which captures sensor

data as soon as the new information arrives. PULL

probes are those table that are sampled at regular

frequency. For example system metrics is collected

in every 5 seconds and therefore recorded in T4 PULL

probe. The various PULL

probes, which provide different information, are

explained below.

⚫ T0 probe: Contains Telephone, System, and

Hardware Information.

⚫ T1 probe: Contains Location, Cell tower, Wi-fi,

and Bluetooth scan information.

⚫ T2 probe: Contains Accelerometer, Gyroscope,

and Magnetic field information.

⚫ T3 probe: Contains information about audio and

light data.

⚫ T4 probe: Contains CPU, memory, Network

traffic, I/O interrupts etc. information.

⚫ App probe: Contains information like memory,

CPU, etc. for each running app.

PUSH probes are those table which are sampled at the

occurrence of specific events. For example, as soon as

a new SMS message arrived it was recorded by the

SMS PUSH probe instantly. There are various PUSH

probes which provides different information are

explained below. • App package : Contains information about

installed, updated and removed apps. • Broadcast : Contains information about

Broadcast intent. • Call log : Contains information about calls. • Moriarty : Contains information about

Malware actions and Malware sessions. • SMS log : Contains information about SMS

status. • Screen status: Contains information about

screen on/off.

4. Results:

Table 1: Comparison of the performance of classification algorithms

In order to evaluate the features obtained after the

feature selection process, we apply the five selected

classification models in this experiment as stated

earlier, and examines their effectiveness using

various performance metrics introduced earlier. The

experiment intends to improve the results of Memon

et al. and performed using a balanced dataset having

70% of data for training and 30% of data for testing

the models. The results of the experiment, for all five

classifiers, are presented in Table 2. The percentage

accuracy achieved by all the five classifiers is

presented in Fig. which shows that the XGBoost

attains the highest classification accuracy of 93.25%,

Random Forest attains the second- highest accuracy

of 92.19%, and the Decision Tree achieves the third-

highest accuracy of 87.74%. The respective accuracy

sore of KNN and Naive Bayes classifier is 84.22%

and 70.79%. The methods used by our system and the

one presented by Memon et al. are very similar.

Their system uses the features selected using the Chi-

Model TPR FPR FNR Prec

ision

F1-

Scor

e

Accu

racy

AUC

Naive

Bayes

62.5% 21.3% 37.5% 73.6

5%

67.6

2%

70.7

9%

78.11%

KNN 83.65% 15.23% 16.34% 83.9

5%

83.8

0%

84.2

2%

91.48%

Decision

Tree

87.74% 12.25% 12.25% 87.2

1%

87.4

7%

87.7

4%

87.72%

Random

Forest

92.42% 8.01% 7.57% 91.6

5%

92.0

4%

92.1

9%

97.56%

XGBoost 93.02% 6.52% 7.0% 93.1

4%

93.0

8%

93.2

5%

97.87%

International Journal of Engineering Science and Advanced Technology (IJESAT) Vol 25 Issue 06, JUNE, 2025

ISSN No: 2250-3676 www.ijesat.com Page 54 of 56

square method having a p-value > 0.05, whereas our

system uses the top 40 features selected using the

mutual information gain method. We show that the

futures selected using the mutual information gain

method gives the better result for the Android

malware detection on the SherLock dataset as the

highest accuracy achieved by our system using the

XGBoost (Extreme Gradient Boosting) classifier is

93.25%, whereas the highest accuracy achieved by

Memon et al. [6] using Gradient Boosted Trees is

90.24%. Our methods show the better result for the

Random Forest also with an accuracy of 92.19% as

compared to the accuracy of 89.67% reported by the

same classifier in Memon et al. . However, the

Decision Tree used by Memon et al. obtained better

results in terms of accuracy value 89.72% and FPR

value 9.65% as compared to our approach having an

accuracy value 87.74% and FPR value 12.25% using

the same algorithm. FPR and FNR denotes the total

misclassified records but FPR is not considered as

critical as FNR because the latter directly indicates

the undetected malware, whereas FPR indicates the

benign apps that have been detected as malicious. So

a low value of FPR and FNR is desirable to make our

detection system more accurate and less time-

consuming. Fig. shows the percentage value of FPR

and FNR observed by all the classifiers. XGBoost has

achieved the lowest FPR and FNR values compared

to other algorithms, which is 6.5% and 7%

respectively. The second- best performance is

achieved by the Random Forest with an FPR of 8%

and an FNR of 7.6%.

Figure 3: Measure of Accuracy, FNR, and FPR for all

five classifiers

The FNR values achieved by the other classification

models as shown in Fig. 3 is 37.5%, 16.3%, and

12.3%, respectively for Naive Bayes, KNN, and

Decision Tree classifier. Similarly, the FPR values

achieved by the other classification models are also

shown in Fig.3, which are 21.3%, 15.2%, and 12.2%

respectively for Naive Bayes, KNN, and Decision

Tree. From the results shown in Table 2, we conclude

that the XGBoost classifier outperforms the other

classification models in terms of the highest accuracy

and the lowest FPR and FNR values, as it reduces the

risk of undetected malware and lowers the false

notification of malware detection. Comparing to

Memon et al. our approach shows a better

performance in terms of FPR also as the lowest FPR

value achieved in our proposed work is 6.52% using

XGBoost classifier, whereas they achieved the lowest

FPR of 9.2% using Gradient Boosted Trees. The

Random Forest in our approach also shows a better

FPR value of 8% compared to the FPR value of

10.16% achieved by the same algorithm in Memon et

al.

Fig 4 : ROC curves for all five classifiers

The Fig 4 represents the Further to assess and

compare the detection performance of every selected

classifier, the ROC curve and AUC values are

computed and presented in Fig. 4 The ROC curves

indicate that XGBoost and Random Forest have

similar detection performance with a high value of

TPR at a low value of FPR. The AUC values of the

Random Forest and XGBoost classifier as shown in

Fig. 4 are 97.6% and 97.9% respectively which are

almost equal and hence both approaches have a

similar detection performance. The detection

performance of XGBoost shows a TPR of 0.93 at an

FPR of 0.065 and Random Forest shows a TPR of

0.92 at an FPR of 0.08. From Fig. 4, we conclude that

the XGBoost and Random Forest have better

detection performance in terms of ROC-AUC values

compared to other classifiers. The performance of

Random Forest is very effective with this dataset due

to two reasons . First, the use of out-of-bag error as

an estimate.

For generalizing the error improves its performance.

Second, being an ensemble classifier it prevents the

overfitting of data as it yields the limited value of

generalization error even after adding more trees to

Random Forest. On the other hand, the performance

of XGBoost is very effective, as it avoids the

International Journal of Engineering Science and Advanced Technology (IJESAT) Vol 25 Issue 06, JUNE, 2025

ISSN No: 2250-3676 www.ijesat.com Page 55 of 56

overfitting of data, reduces error rate, and performs

faster than other classifiers, due to regularization

nature and parallel processing implementation .

5. Conclusion and Future Work
In this work, we have investigated the performance of

various classifiers like naive bayes, knn, decision

tree, random forest, and xgboost for android malware

detection using low- privileged monitorable features.

To train our model, we have used system-specific

features selected using the mutual information gain

method from the t4 probe sampled in the sherlock

dataset. The results obtained in this work shows that

the futures selected using the mutual information gain

method gives the better result for the android

malware detection on the sherlock dataset. The

findings of this research show that the xgboost and

random forest are the top two performers with the

respective accuracy of 93.25% and 92.19%. Xgboost

classifier is the most accurate in detecting the

malware with 93% overall values of precision, recall,

and accuracy. In terms of fnr and fpr values, xgboost

also outperforms the other classifiers with respective

values of 7.0% and 6.52%. Naive bayes, knn, and

decision tree are not that effective as their accuracy

score is 70.79%, 84.22%, and 87.74% respectively. If

we consider the roc curves, the detection

performance of xgboost is best with a tpr of 0.93 at

an fpr of 0.065 and random forest has the second-best

detection rate with a tpr of 0.92 at an fpr of 0.08,

which indicates that xgboost has the better

classification power. So in this research, we employ

various machine learning techniques and conclude

that xgboost and random forest classifiers are the top

two performers for android malware detection. After

all there is always some scope for the improvement in

any work. In this work there is also a scope of

improving the results by utilizing the large amount of

data. Along with this there is also a scope of selecting

the set of good features which helps in improving the

detection accuracy. Further, data pre-processing can

help to achieve a better result by removing the

anomalous data.

REFERENCES:

[1] “The android software stack,”
https://developer.android.com/guide/platform,

accessed: 2020-10-29.
[2] “K-nearest neighbors,”

https://towardsdatascience.com/knn-k-nearest-
neighbors-1 - a4707b24bd1d, accessed: 2020-

10-29.

[3] “Classifying data with decision trees,”
https://elf11.github.io/2018/07/01/python-

decision-trees-acm.html, accessed: 2020-10-29.
[4] “Random forests,”

https://towardsdatascience.com/random-

forests-and-decision-t reesfrom-scratch-in-
python-3e4fa5ae4249, accessed: 2020-10-29.

[5] “Smartphone market share,” 2020, (Accessed :
July 2020). [Online]. Available:
https://www.idc.com/promo/smartphone-
market-share/o

[6] Memon, N., Anwar, Z., Rahman, M. A., &
Khan, S. (2019). SherLock: An Efficient and
Effective Approach for Android Malware
Detection Using Machine Learning
Techniques. Journal of Information Security
and Applications, 47, 236–245.
https://doi.org/10.1016/j.jisa.2019.04.010

International Journal of Engineering Science and Advanced Technology (IJESAT) Vol 25 Issue 06, JUNE, 2025

ISSN No: 2250-3676 www.ijesat.com Page 56 of 56

https://www.idc.com/promo/smartphone
http://www.idc.com/promo/smartphone-market-share/o
http://www.idc.com/promo/smartphone-market-share/o
http://www.idc.com/promo/smartphone-market-share/o
http://www.idc.com/promo/smartphone-market-share/o
http://www.idc.com/promo/smartphone-market-share/o

	3. Proposed System
	Fig 2: Architecture Diagram
	The fig 2 represents a comprehensive machine learning workflow pipeline designed to ensure robust model development and evaluation. The process begins with loading CSV data, followed by data preprocessing and splitting into training and test sets. Fea...
	3.2 Evaluation Metrix:z

